References
- I. Beg and M. Abbas, Equivalence and stability of random fixed point iterative procedures, J. Appl. Math. Stoch. Anal. 2006 (2006), Art. ID 23297, 19 pp.
- I. Beg and M. Abbas, Iterative procedures for solution of random equations in Banach spaces, J. Math. Anal. Appl. 315 (2006), 181-201. https://doi.org/10.1016/j.jmaa.2005.05.073
- T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), no. 5, 611-657.
- S. S. Chang, The Mann and Ishikawa iterative approximation of solutions to variational inclusions with accretive type mappings, Comput. Math. Appl. 37 (1999), no. 9, 17-24.
- B. S. Choudhury, Random Mann iteration scheme, Appl. Math. Lett. 16 (2003), no. 1, 93-96. https://doi.org/10.1016/S0893-9659(02)00149-0
- B. S. Choudhury and M. Ray, Convergence of an iteration leading to a solution of a random operator equation, J. Appl. Math. Stoch. Anal. 12 (1999), no. 2, 161-168. https://doi.org/10.1155/S1048953399000167
- B. S. Choudhury and A. Upadhyay, An iteration leading to random solutions and fixed points of operators, Soochow J. Math. 25 (1999), no. 4, 395-400.
- R. Chugh and V. Kumar, Convergence of SP iterative scheme with mixed errors for accretive Lipschitzian and strongly accretive Lipschitzian operators in Banach spaces, Int. J. Comput. Math. 90 (2013), no. 9, 1865-1880. https://doi.org/10.1080/00207160.2013.765558
- R. Chugh, S. Narwal, and V. Kumar, Convergence of random SP iterative scheme, Appl. Math. Sci. Vol.7 (2013), no. 46, 2283-2293.
- I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
- L. B. Ciric, A. Rafiq, and N. Cakic, On Picard iterations for strongly accretive and strongly pseudo-contractive Lipschitz mappings, Nonlinear Anal. 70 (2009), no. 12, 4332-4337. https://doi.org/10.1016/j.na.2008.10.001
- L. B. Ciric and J. S. Ume, Ishikawa iterative process for strongly pseudocontractive operators in arbitrary Banach spaces, Math. Commun. 8 (2003), no. 1, 43-48.
- L. B. Ciric and J. S. Ume, Ishikawa iterative process with errors for nonlinear equations of generalized monotone type in Banach spaces, Math. Nachr. 278 (2005), no. 10, 1137-1146. https://doi.org/10.1002/mana.200310298
- L. B. Ciric, J. S. Ume, and S. N. Jesic, On random coincidence and fixed points for a pair of multivalued and single-valued mappings, J. Inequal. Appl. 2006 (2006), Art. ID 81045, 12 pp.
- L. B. Ciric, J. S. Ume, S. N. Jesic, Arandjelovic-Milovanovic, and M. Marina, Modified Ishikawa iteration process for nonlinear Lipschitz generalized strongly pseudocontractive operators in arbitrary Banach spaces, Numer. Funct. Anal. Optim. 28 (2007), no. 11-12, 1231-1243. https://doi.org/10.1080/01630560701563818
- X. P. Ding, Generalized strongly nonlinear quasivariational inequalities, J. Math. Anal. Appl. 173 (1993), no. 2, 577-587. https://doi.org/10.1006/jmaa.1993.1089
- X. P. Ding, Perturbed proximal point algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl. 210 (1997), no. 1, 88-101. https://doi.org/10.1006/jmaa.1997.5370
- A. Hassouni and A. Moudafi, A perturbed algorithms for variational inclusions, J. Math. Anal. Appl. 185 (1994), no. 3, 706-721. https://doi.org/10.1006/jmaa.1994.1277
- J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. https://doi.org/10.4064/fm-87-1-53-72
- T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. https://doi.org/10.2969/jmsj/01940508
- K. R. Kazmi, Mann and Ishikawa type perturbed iterative algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl. 209 (1997), no. 2, 572-584. https://doi.org/10.1006/jmaa.1997.5368
- A. R. Khan, F. Akbar, and N. Sultana, Random coincidence points of subcompatible multivalued maps with applications, Carpathian J. Math. 24 (2008), no. 2, 63-71.
- A. R. Khan, A. B. Thaheem, and N. Hussain, Random fixed points and random approximations in nonconvex domains, J. Appl. Math. Stoch. Anal. 15 (2002), no. 3, 263-270.
- A. R. Khan, A. B. Thaheem, and N. Hussain, Random fixed points and random approximations, Southeast Asian Bull. Math. 27 (2003), no. 2, 289-294.
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), no. 1, 217-229. https://doi.org/10.1006/jmaa.2000.7042
- B. E. Rhoades, Iteration to obtain random solutions and fixed points of operators in uniformly convex Banach spaces, Soochow J. Math. 27 (2001), no. 4, 401-404.
- A. H. Siddiqi and Q. H. Ansari, General strongly nonlinear variational inequalities, J. Math. Anal. Appl. 166 (1992), no. 2, 386-392. https://doi.org/10.1016/0022-247X(92)90305-W
- H. Siddiqi, Q. H. Ansari, and K. R. Kazmi, On nonlinear variational inequalities, Indian J. Pure Appl. Math. 25 (1994), no. 9, 969-973.
- E. Zeidler, Nonlinear Functional Analysis and its Applications. Part II: Monotone Operators, Springer-Verlag, New York, 1985.
- L. C. Zeng, Iterative algorithms for finding approximate solutions for general strongly nonlinear variational inequalities, J. Math. Anal. Appl. 187 (1994), no. 2, 352-360. https://doi.org/10.1006/jmaa.1994.1361
- S. S. Zhang, Existence and approximation of solutions to variational inclusions with accretive mappings in Banach spaces, Appl. Math. Mech. 22 (2001), no. 9, 997-1003. https://doi.org/10.1023/A:1016352023436
- L. C. Zhu, Iterative solution of nonlinear equations involving m-accretive operators in Banach spaces, J. Math. Anal. Appl. 188 (1994), no. 2, 410-416. https://doi.org/10.1006/jmaa.1994.1434
Cited by
- Stability and Strong Convergence Results for Random Jungck-Kirk-Noor Iterative Scheme vol.58, pp.58, 2017, https://doi.org/10.1515/fascmath-2017-0012
- Exponential inequalities for Mann’s iterative scheme with functional random errors vol.37, pp.1, 2018, https://doi.org/10.1080/07474946.2018.1427964