• Title/Summary/Keyword: strong Mori module

Search Result 3, Processing Time 0.018 seconds

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

MODULE-THEORETIC CHARACTERIZATIONS OF KRULL DOMAINS

  • Kim, Hwan-Koo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.601-608
    • /
    • 2012
  • The following statements for an infra-Krull domain $R$ are shown to be equivalent: (1) $R$ is a Krull domain; (2) for any essentially finite $w$-module $M$ over $R$, the torsion submodule $t(M)$ of $M$ is a direct summand of $M$; (3) for any essentially finite $w$-module $M$ over $R$, $t(M){\cap}pM=pt(M)$, for all maximal $w$-ideal $p$ of $R$; (4) $R$ satisfies the $w$-radical formula; (5) the $R$-module $R{\oplus}R$ satisfies the $w$-radical formula.