• 제목/요약/키워드: strip footing

검색결과 59건 처리시간 0.027초

정방형 기초와 Unlined Soft Ground터널의 3차원적 거동 (Three Dimensional Behavior or Square Footing and Bnlined Solt Ground Tunnel)

  • 유충식
    • 한국지반공학회지:지반
    • /
    • 제10권3호
    • /
    • pp.97-110
    • /
    • 1994
  • Lining이 타설되기 이전의 unlink 안정 문제를 야기시킬 수 있으며 이 구조물의 역학적 상호작용에 관한 unlined 터널의 3차원적 거동에 관한 원 탄소성 유한요소해석 프로그램을 기초의 극한 지지력, 지반과 터널주컴퓨터 해석 결과를 고찰하여 정방형 unlined 터널은 기초의 극한 지지력을 기초의 형상이나 근입깊이 등에 의해 치하는 터널은 터널의 축방향으로 발생하는 응력의 크기는 정방형 기초 위치와 음력의 종류에 따라 다른 것으로 상호작용의 정도에 따라 다름을 볼 수 있었다.

  • PDF

지오그리드로 보강된 연약지반 위에 위치한 연속기초의 극한 지지력 (Bearing Capacity of Strip Footing on Geogrid-Reinforced Soft Ground)

  • 유충식;신승우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 1994
  • This paper presents the results of a parametric study on the bearing capacity behavior of a footing located above geogrid-reinforced ground using the finite element method of analysis. A wide range of boundary conditions were analyzed, with varing geogrid design parameters such as depth of geogrid layer, length and siffness of geogrid, and number of geogrid layer, were analyzed. Based on the results of analysis, the optimum geogrid design parameters were determined, which maximize the reinforcing effect of geogrid reinforcement for a given conidition. Furthermore, the mechanistic behavior of a geogrid-reinforced ground subjected to a footing load was discussed using the results of analysis such as stress distribution, propagation of plastic yielding, displacement vector among others.

  • PDF

과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석 (A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition)

  • 유남재;이명욱;박병수;이승주
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

Parametric study on flexible footing resting on partially saturated soil

  • Singh, Mandeep;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.233-245
    • /
    • 2014
  • Coupled finite element analysis is carried out to study the effect of degree of saturation on the vertical displacements and pore water pressures simultaneously by developing a FORTRAN90 code. The finite element formulation adopted in the present study is based upon Biot's consolidation theory to include partially saturated soils. Numerical methods are applied to a two-dimensional plane strain strip footing (flexible) problem and the effect of variable degree of saturation on the response of excess pore water pressure dissipation and settlement of the footing is studied. The immediate settlement in the case of partly saturated soils is larger than that of a fully saturated soil, the reason being the presence of pore air in partially saturated soils. On the other hand, the excess pore water pressure for partially saturated soil are smaller than those for fully saturated soil.

비점착성 사면의 그물식 뿌리말뚝의 보강효과 (Reinforcing Effect of Cohesionless Slope by Reticulated Root Piles)

  • 유남재;박병수;최종상
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.7-16
    • /
    • 1998
  • This paper is an experimental study of investigating the reinforcing effect and the behavior of cohesionless slope installed with reticulated root pils. Reduced scale model tests with plane strain conditions were performed to study the behavior of the strip footing located on the surface of cohesionless slopes reinforced with root piles. Model tests were carried out with Jumunjin Standard Sand of 45% relative density prepared by raining method to have an uniform slope foundation during tests. Slope of model foundation was 1 : 1.5 and a rigid model slop. Parametric model tests were performed with changing location of model footing, arrangements of root piles and angles of pile installation. On the other hands, the technique with camera shooting was used to monitor sliding surface formed with discontinuty of dyed sand prepared during formation o foudation. From test results, parameters affecting the behavior of model footing were analyzed qualitatively to evaluate their effects on the characteristic of load - settlement, ultimate bearing capacity of model footing and failure mechanism based on the formation of failure surface.

  • PDF

모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구 (Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle)

  • 김동준;윤준웅;지성현;최재형;이진선;김동수
    • 한국지반공학회논문집
    • /
    • 제30권1호
    • /
    • pp.49-63
    • /
    • 2014
  • 모래지반의 지표면에 위치한 거친 바닥면을 가진 강체 연속기초와 원형기초에 대하여 수치해석을 이용하여 팽창각 변화에 따른 지지력계수 $N_{\gamma}$와 형상계수를 구하였다. 양해법(explicit method)에 기반한 유한차분해석을 이용하여 지지력계수를 산정하기 위한 수치모델과 해석절차를 개발하고, Mohr-Coulomb 소성모델을 이용하여 다양한 내부마찰각(${\phi}$)과 팽창각(${\psi}$) 범위에 대하여 지지력계수를 도출하였다. 팽창각이 감소됨에 따라 지지력도 감소하는 것으로 나타났으며, 보편적인 지지력계수 제안식들이 가정하고 있는 관련흐름법칙(associated flow-rule)이 적용된 경우(${\psi}={\phi}$)를 기준으로 비관련흐름법칙(nonassociated flow-rule)이 적용된 경우(${\psi}$ < ${\phi}$)의 상대적인 지지력 비율을 산출하였고, 일반적인 모래에 대한 관계식을 제안하였다. 원형기초의 형상계수는 연속기초의 평면변형률 조건의 고려 여부에 따라 크게 변하였으며, 평면변형률 조건을 고려하여 내부마찰각을 증가시킨 경우가 기존의 실험 결과와 유사한 경향을 나타내었다. 형상계수 제안식들의 경향이 차이를 나타내는 원인에 대하여 고찰하고 설계시 적용 방안을 제시하였다.

지표면 띠하중 재하에 따른 사질토지반 지중연직응력 증가량의 Boussinesq 이론값에 대한 실험적 고찰 (An Experimental Investigation of Boussinesq's Theoretical Value of Vertical Stress Increment in Sandy Soil Mass Caused by Surface Strip Loading)

  • 임종석
    • 한국지반공학회논문집
    • /
    • 제20권9호
    • /
    • pp.5-15
    • /
    • 2004
  • 정밀한 기초설계를 위하여 지중연직응력분포를 파악하는 것은 중요하다. 본 연구에서는 지표면 재하에 의한 사질토지반의 지중연직응력 증가량에 대한 Boussinesq의 이론을 고찰하기 위하여 일련의 실내모형시험을 수행하였으며 Boussinesq의 이론값을 실측값과 비교하였다. Boussinesq의 이론값은 깊이에 관계없이 기초판 하부에서는 실측값보다 작았다 기초판의 바깥부분에서는 기초폭의 1.0배의 깊이에서는 이론값은 실측값보다 컸으나 기초폭의 2.0배 및 3.0배의 깊이에서는 이론값과 실측값이 거의 비슷해지는 경향이었다. 가해진 단위면적당 하중에 대한 지중연직응력은 하중이 증가함에 따라 감소하였다. 이러한 경향들은 상대밀도나 기초폭에 관계없이 나타났다. Boussinesq의 이론을 이용할 때 이와 같은 결과를 감안하여 이론값을 보정하면 보다 정확한 값을 얻을 수 있을 것이다.

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Parviz Tafazzoli Moghaddam;Pezhman Fazeli Dehkordi;Mahmoud Ghazavi
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.543-552
    • /
    • 2023
  • The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.

강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석 (Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground)

  • 황희석;김동건;유남재
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF