• Title/Summary/Keyword: strip footing

Search Result 61, Processing Time 0.029 seconds

Bearing capacity of strip footings on a stone masonry trench in clay

  • Mohebkhah, Amin
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.255-267
    • /
    • 2017
  • Soft clay strata can suffer significant settlement or stability problems under building loads. Among the methods proposed to strengthen weak soils is the application of a stone masonry trench (SMT) beneath RC strip foundations (as a masonry pad-stone). Although, SMTs are frequently employed in engineering practice; however, the effectiveness of SMTs on the ultimate bearing capacity improvement of a strip footing rested on a weak clay stratum has not been investigated quantitatively, yet. Therefore, the expected increase of bearing capacity of strip footings reinforced with SMTs is of interest and needs to be evaluated. This study presents a two-dimensional numerical model using the discrete element method (DEM) to capture the ultimate load-bearing capacity of a strip footing on a soft clay reinforced with a SMT. The developed DEM model was then used to perform a parametric study to investigate the effects of SMT geometry and properties on the footing bearing capacity with and without the presence of surcharge. The dimensions of the SMTs were varied to determine the optimum trench relative depth. The study showed that inclusion of a SMT of optimum dimension in a soft clay can improve the bearing capacity of a strip footing up to a factor of 3.5.

Discrete element modeling of strip footing on geogrid-reinforced soil

  • Sarfarazi, Vahab;Tabaroei, Abdollah;Asgari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.

The Stability of Strip Footing above Underground Cavity (지하공동에 인접한 연속기초의 안정성)

  • Oh, Se-Wook;Lee, Bong-Jik;Bae, Woo-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.69-76
    • /
    • 2006
  • In this study, an experimental study in sand ground that was prepared by raining method was performed for modeling the bearing capacity behavior of strip footing above a cavity. The critical range of bearing capacity of the strip footing affected by underground cavity was investigated by comparing results between experiment and theory. The size of the critical region depends on several factors such as footing shape, soil property, cavity size and cavity shape. The ultimate bearing capacity was more influenced by the depth of the underground cavity than the eccentricity of the underground. In addition, an underground cavity influences on not only the decrease of the bearing capacity, but also the differential settlement of a strip footing.

  • PDF

Numerical analysis of Bearing Capacity and Progressive Failure of Footings (기초지반의 지지력 및 진행성 파괴에 대한 수치해석)

  • 김영민
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.139-146
    • /
    • 1997
  • The failure of footing generally involves the concentration of deformation into one or more narrow bands. With the displacement of the footing, the failure plane will subsequently form The purpose of this paper is to assess the capabilities of numerical techniques to predict bearing capacity and progressive failure of footings. By using the method of large deformation theory and strain softening we have investigated the progressive failure of strip footing on undrained clay. This paper describes the procedure to predict the entire loadfisplacement curve and the failure mechanism of strip footing. The presented results show that it is Possible to analyze the Post Peak behavior of strip footing numerically and to give a progressive failure mechanism clearly.

  • PDF

Bearing capacity of foundation on rock mass depending on footing shape and interface roughness

  • Alencar, Ana S.;Galindo, Ruben A.;Melentijevic, Svetlana
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.391-406
    • /
    • 2019
  • The aim of this paper was to study the influence of the footing shape and the effect of the roughness of the foundation base on the bearing capacity of shallow foundations on rock masses. For this purpose the finite difference method was used to analyze the bearing capacity of various types and states of rock masses under the assumption of Hoek-Brown failure criterion, for both plane strain and axisymmetric model, and considering smooth and rough interface. The results were analyzed based on a sensitivity study of four varying parameters: foundation width, rock material constant (mo), uniaxial compressive strength and geological strength index. Knowing how each parameter influences the bearing capacity depending on the footing shape (circular vs strip footing) and the footing base interface roughness (smooth vs rough), two correlation factors were developed to estimate the percentage increase of the ultimate bearing capacity as a function of the footing shape and the roughness of the footing base interface.

Analysis of a strip footing on a homogenous soil using element free Galerkin method

  • Ganaiea, Aashiq H.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.365-383
    • /
    • 2015
  • Strip footing is an important type of shallow foundations and is commonly used beneath the walls. Analysis of shallow foundation involves the determination of stresses and deformations. Element free Galerkin method, one of the important mesh free methods, is used for the determination of stresses and deformations. Element free Galerkin method is an efficient and accurate method as compared to finite element method. The Element Free Galerkin method uses only a set of nodes and a description of model boundary is required to generate the discrete equation. Strip footing of width 2 m subjected to a loading intensity of 200 kPa is studied. The results obtained are agreeing with the values obtained using analytical solutions available in the literature. Parametric study is done and the effect of modulus of deformation, Poisson's ratio and scaling parameter on deformation and stresses are determined.

Effects of the Bearing Capacity of Strip Footing by Underground Cavity (지하공동이 연속기초의 지지력에 미치는 영향)

  • Lee, Jun-Dae;Lee, Bong-Jik;Oh, Se-Wook;Kang, Jong-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2000
  • In this study, the bearing capacity behavior of strip footing located above a continuous cavity in sand was investigated experimentally. The model footing test was performed in a model box made by using raining method in sand. The model footing test results were compared with those obtained from theoretically proposed equations. The results of the analysis indicate that there is a critical region under the footing. For strip footing, there exists a critical depth below which the presence of the cavity has negligible influence on the footing performance. Only when the cavity is located within this region will the footing performance be significantly affected by the presence of the cavity. The size of the critical region depends on several factors such as footing shape, soil property, cavity size and cavity shape. When the cavity is located within the critical region, the bearing capacity of the footing varies with various factors, such as the size and location of the cavity and the depth of foundation. Based on the experimental study, the following conclusions were induced. 1. The ultimate bearing capacity due to the eccentricity of a underground cavity increases at the rate of the small rather than that due to the depth of a underground cavity. This indicates that the bearing capacity of a strip footing is influenced on the depth rather than the eccentricity of a underground cavity. 2. The critical $depth(D/B)_{cr}$, by underground cavity in sand soil ground that is made by the relative density($D_r$)=55%, 65%, 75%, approaches a range of about 8~10 in case of W/B=1, and about 11~13 in case of W/B=2. 3. In case of the relative density($D_r$) 75%, the most outstanding differential settlement trend is shown in the depth of 4~8cm regardless of the size of cavity, namely, when the value of D/B is 1~2. Therefore, a underground cavity influences on not only the decrease of the bearing capacity but also the differential settlement of a strip footing.

  • PDF

A Study on Comparison of Finite Element Analysis with Model Test of Shallow Footing Failure for Cohesionless Soil with Non-associated Plasticity and Some Smooth Footing (사질토지반의 지지력분석을 위한 얕은기초의 파괴거동에 대한 모형실험과 유한요소해석 비교 검토)

  • Kim, Young-Min;Kang, Sung-Wi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • This paper describes the procedure to predict the entire load-displacement curve and the failure mechanism of shallow strip footing for real soil. The presented results show that it is possible to analyze the post peak behavior of shallow strip footing and to give a progressive failure mechanism clearly. Finite element computation of the bearing capacity factor $N_{\gamma}$ have been made for shallow strip footings with friction angles and dilation angle. It is shown that commonly used values of $N_{\gamma}$ which have generally been based on associated plasticity calculations are unconservative for real soil with non-associated plasticity and some smooth footing.

  • PDF

Stabilization of backfill using TDA material under a footing close to retaining wall

  • Arefnia, Ali;Dehghanbanadaki, Ali;Kassim, Khairul Anuar;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.197-206
    • /
    • 2020
  • Reutilization of solid waste such as Tire Derived Aggregate (TDA) and mixing it with soft soil for backfill material not only reduces the required volume of backfill soil (i.e., sand-mining procedures; reinforcement), but also preserves the environment from pollution by recycling. TDA is a widely-used material that has a good track record for improving sustainable construction. This paper attempted to investigate the performance of Kaolin-TDA mixtures as a backfill material underneath a strip footing and close to a retaining wall. For this purpose, different types of TDA i.e., powdery, shredded, small-size granular (1-4 mm) and large-size granular (5-8 mm), were mixed with Kaolin at 0, 20, 40, and 60% by weight. Static surcharge load with the rate of 10 kPa per min was applied on the strip footing until the failure of footing happened. The behaviour of samples K80-G (1-4 mm) 20 and K80-G (5-8 mm) 20 were identical to that of pure Kaolin, except that the maximum footing stress had grown by roughly three times (300-310 kPa). Therefore, it can be concluded that the total flexibility of the backfill and shear strength of the strip footing have been increased by adding the TDA. The results indicate that, a significant increase in the failure vertical stress of the footing is observed at the optimum mixture content. In addition, the TDA increases the elasticity behaviour of the backfill.