• Title/Summary/Keyword: stretching functions

Search Result 46, Processing Time 0.022 seconds

The Effect of Dynamic Neuromuscular Stabilization (DNS) on the Respiratory Function of Subjects with Forward Head Posture (FHP)

  • Bae, Won-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE: The purpose of this study was to apply dynamic neuromuscular stabilization (DNS) to subjects with forward head posture (FHP) and to compare its effects on respiratory function as against the conventional neck stabilization exercise and neck stretching and extensor strengthening exercises. METHODS: The whole-body posture measurement system was used to measure the degree of FHP, and a spirometer and a respiratory gas analyzer were used to measure the respiratory function. After the intervention was completed, the changes over time were analyzed in the DNS group, the neck stabilization exercise group, and the neck stretching and extensor strengthening exercise group. The inter-group difference in the changes was also analyzed. A repeated ANOVA was performed to compare the respiratory function according to the period between the three groups, and the least significant difference (LSD) method was used for the post hoc test. RESULTS: After the 6-week exercise period, respiratory functions, such as forced vital capacity (FVC), forced expiratory volume for 1 second (FEV1), forced expiratory volume for 1 sec/forced vital capacity (FEV1/FVC), maximum oxygen intake (VO2max), and the volume of expired gas (VE), significantly improved according to the period (p < .05), but no inter-group differences were found. CONCLUSION: DNS is an effective training method, and can be applied along with neck stabilization exercise and neck stretching and extensor strengthening exercises, which are widely used in clinical practice, to people with FHP who cannot directly perform neck exercises to improve their respiratory function.

Robust quasi 3D computational model for mechanical response of FG thick sandwich plate

  • Achouri, Fatima;Benyoucef, Samir;Bourada, Fouad;Bouiadjra, Rabbab Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.571-589
    • /
    • 2019
  • This paper aims to develop a quasi-3D shear deformation theory for the study of bending, buckling and free vibration responses of functionally graded (FG) sandwich thick plates. For that, in the present theory, both the components of normal deformation and shear strain are included. The displacement field of the proposed model contains undetermined integral terms and involves only four unknown functions with including stretching effect. Using Navier's technique the solution of the problem is derived for simply supported sandwich plate. Numerical results have been reported, and compared with those available in the open literature were excellent agreement was observed. Finally, a detailed parametric study is presented to demonstrate the effect of the different parameters on the flexural responses, free vibration and buckling of a simply supported sandwich plates.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

Effects of Exercise on Cardiopulmonary Functions and Shoulder Joint Functioning in Breast Cancer Patients undergoing Radiation Therapy after Breast Surgery (유방암 수술 후 방사선치료중인 환자를 위한 운동프로그램이 심폐기능 및 어깨관절기능에 미치는 효과)

  • 채영란;최명애
    • Journal of Korean Academy of Nursing
    • /
    • v.31 no.3
    • /
    • pp.454-466
    • /
    • 2001
  • Purpose: The purpose of this study was to determine the effects of exercise program on cardiopulmonary functions and shoulder joint functioning in breast cancer patients who under- went radiation therapy after surgery. Method: Subjects in the experimental group(N=12) participated in an exercise program for eight weeks. The Exercise program consisted of shoulder stretching, arm weight training, and walking on treadmill. Maximal oxygen uptake (v2max), maximal running time, shoulder joint range of motion, and shoulder functional assessment were determined before and after the exercise program. Baseline sociodemographic and medical data were compared between experimental group and control group using the Fisher's exact test and Mann- Whitney U test. For effects of the exercise program, repeated measures ANOVA were used. Result: 1) Following the exercise program for eight weeks, both v$\alpha$ max and maximal running time tended to increase in experimental group comparing with the control group. 2) Shoulder abduction, extension and flexion of the operated upper extremity in the experimental group comparing with control significantly increased after the exercise program(p<0.05). 3) Shoulder flexion of the normal upper extremity in the experimental group comparing with control significantly increased after the exercise program(p<0.05). Conclusion: The results suggest that the exercise program for breast cancer patients undergoing radiation therapy after breast surgery can improve shoulder functions and increase cardiopulmonary functions, which are maximal oxygen uptake and maximal running time.

  • PDF

Molecular Dynamics Simulation Studies of Zeolite A. Ⅵ. Vibrational Motion of Non-Rigid Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.422-428
    • /
    • 1998
  • In the present paper, we report a molecular dynamics (MD) simulation of non-rigid zeolite-A framework only as the base case for a consistent study of the role of intraframework interaction on several zeolite-A systems using the same technique in our previous studies of rigid zeolite-A frameworks. Usual bond stretching, bond angle bending, torsional rotational, and non-bonded Lennard-Jones and electrostatic interactions are considered as intraframework interaction potentials. The comparison of experimental and calculated structural parameters confirms the validity of our MD simulation for zeolite-A framework. The radial distribution functions of non-rigid zeolite-A framework atoms characterize the vibrational motion of the framework atoms. Mean square displacements are all periodic with a short period of 0.08 ps and a slow change in the amplitude of the vibration with a long period of 0.53 ps. The displacement auto-correlation (DAC) and neighbor-correlation (DNC) functions describe the up-and-down motion of the framework atoms from the center of α-cage and the back-and-forth motion on each ring window from the center of each window. The DAC and DNC functions of the framework atoms from the center of α-cage at the 8-ring windows have the same period of the up-and-down motion, but those functions from the center of 8-ring window at the 8-ring windows are of different periods of the back-and-forth motion.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates

  • Khadir, Adnan I.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.621-640
    • /
    • 2021
  • Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.

Assessing Density Functional Theories to Compute the OH Stretching Frequencies of Water Molecules in Condensed Phases (응축상 물 분자의 OH 수축 진동수 계산을 위한 전자밀도 범함수 비교)

  • Kiyoung, Jeon;Mino, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.13-18
    • /
    • 2023
  • We evaluate electron density functional theories for the computation of 0-1 and 1-2 transition energies of local OH stretching motion of water molecules in condensed phases. By examining thirteen density functionals and nine sets of basis functions, it was found that the optimal combination that predicts the transition energies highly correlated with those calculated by the coupled cluster theory, CCSD(T), is the hybrid density functional theory developed by Head-Gordon group, ωB97X(D)/6-31+G*.

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.