• 제목/요약/키워드: stretchable substrate

검색결과 41건 처리시간 0.026초

신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서 (Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes)

  • 김강현;차재경;김종만
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

엘라스토머 기판 상에 제작한 유기 강유전체 메모리 소자의 전기적 특성 (Electrical Characteristics of Organic Ferroelectric Memory Devices Fabricated on Elastomeric Substrate)

  • 정순원;류봉조;구경완
    • 전기학회논문지
    • /
    • 제67권6호
    • /
    • pp.799-803
    • /
    • 2018
  • We demonstrated memory thin-film transistors (MTFTs) with organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) and an amorphous oxide semiconducting indium gallium zinc oxide channel on the elastomeric substrate. The dielectric constant for the P(VDF-TrFE) thin film prepared on the elastomeric substrate was calculated to be 10 at a high frequency of 1 MHz. The voltage-dependent capacitance variations showed typical butterfly-shaped hysteresis behaviors owing to the polarization reversal in the film. The carrier mobility and memory on/off ratio of the MTFTs showed $15cm^2V^{-1}s^{-1}$ and $10^6$, respectively. This result indicates that the P(VDF-TrFE) film prepared on the elastomeric substrate exhibits ferroelectric natures. The fabricated MTFTs exhibited sufficiently encouraging device characteristics even on the elastomeric substrate to realize mechanically stretchable nonvolatile memory devices.

웨어러블 패키징용 Polydimethylsiloxane (PDMS) 신축성 기판의 강성도 변화거동 (Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications)

  • 최정열;박대웅;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.125-131
    • /
    • 2014
  • 웨어러블 패키징용 신축성 기판을 개발하기 위해 투명한 PDMS인 Sylgard 184와 검정색 PDMS인 Sylgard 170에 대해 base/curing agent 혼합비에 따른 탄성계수의 변화거동을 분석하였다. Sylgard 184와 Sylgard 170의 공칭응력-공칭변형률 곡선에서 구한 공칭탄성계수에 비해 진응력-진변형률 관계로부터 구한 진탄성계수가 2배 이상 높았으며, 진탄성계수와 공칭탄성계수의 차이는 PDMS의 강성도가 높아질수록 증가하였다. Sylgard 184에서는 base/curing agent의 혼합비가 10일 때 탄성계수의 최대값을 얻을 수 있었으며, 이때 공칭탄성계수는 1.74 MPa, 진탄성계수는 3.57 MPa이었다. Sylgard 170에서는 base/curing agent 혼합비가 2일 때 탄성계수가 최대가 되었으며, 이때 공칭탄성계수와 진탄성계수는 각기 1.51 MPa와 3.64 MPa이었다.

High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics

  • 조정호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.69.3-69.3
    • /
    • 2012
  • A high-performance low-voltage graphene field-effect transistor (FED array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 and 91 $cm^2/Vs$, respectively, at a drain bias of - I V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.

  • PDF

유연 기판 기반 전기화학 센서 응용을 위한 레이저 유도 그래핀 전극 제작 및 전사 연구 (Fabrication and Transfer of Laser Induced Graphene (LIG) Electrode for Flexible Substrate-based Electrochemical Sensor Applicatins)

  • 김정대;김태헌;박정호
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.406-412
    • /
    • 2018
  • This paper describes the fabrication process of laser induced graphene (LIG) and its transfer method on to a flexible and stretchable PDMS substrate. By irradiating CO2 laser on a polyimide(PI) film surface, a localized high temperature is created, resulting in a three-dimensional porous graphene network structure with good conductivity. This LIG electrode is relatively easy to fabricate and since it is very weak the LIG electrode was transferred to a flexible PDMS substrate to increase the sturdiness as well as possible use in flexible applications. Sheet resistance, thickness, and electrochemical activity of the fabricated in-situ LIG electrodes have been examined and compared with the LIG electrodes after transferring to PDMS elastomer. The properties of the LIG electrodes were also examined depending on the $CO_2$ laser power. As the irradiated laser power increased, the LIG electrode resistance decreases and the LIG electrode thickness increased. At 4.8 W of laser power, the average sheet resistance and thickness of the fabricated LIG electrodes were approximately $31.7{\Omega}/{\Box}$ and $62.67{\mu}m$, respectively. Moreover, the electrochemical activity of the fabricated LIG electrode at 4.8 W of laser power showed a high oxidation current of $28.2{\mu}A$ after transferring to PDMS.

Nano-Structures on Polymers Evolved by Ion Beam/Plasma

  • Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2012
  • Surface engineering of polymers has a broad array of scientific and technological applications that range from tissue engineering, regenerative medicine, microfluidics and novel lab on chip devices to building mechanical memories, stretchable electronics, and devising tunable surface adhesion for robotics. Recent advancements in the field of nanotechnology have provided robust techniques for controlled surface modification of polymers and creation of structural features on the polymeric surface at submicron scale. We have recently demonstrated techniques for controlled surfaces of soft and relatively hard polymers using ion beam irradiation and plasma treatment, which allows the fabrication of nanoscale surface features such as wrinkles, ripples, holes, and hairs with respect to its polymers. In this talk, we discuss the underlying mechanisms of formation of these structural features. This includes the change in the chemical composition of the surface layer of the polymers due to ion beam irradiation or plasma treatment and the instability and mechanics of the skin-substrate system. Using ion beam or plasma irradiation on polymers, we introduce a simple method for fabrication of one-dimensional, two-dimensional and nested hierarchical structural patterns on polymeric surfaces on various polymers such as polypropylene (PP), polyethylene (PE), poly (methyl methacrylate) PMMA, and polydimethylsiloxane (PDMS).

  • PDF

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF

Electrospinning법으로 제조된 PZT 섬유의 구조분석 및 특성평가 (Structural Analysis and Characterization of PZT Fiber Fabricated by Electrospinning)

  • 박춘길;윤지선;정영훈;남중희;조정호;백종후;정대용
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.466-469
    • /
    • 2013
  • Currently, piezoelectric ceramics are being applied in various fields, such as ultrasonic sensors, vibration devices, sound filters, and various energy conversion devices. Flexible piezoelectric ceramics are widely studied in an effort to mitigate the disadvantages of their brittle and inductile properties. Structural damage to piezoelectric fibers is much less than that to thin films when piezoelectric fibers are twisted or bent. Therefore, stretchable devices can be fabricated if piezoelectric fibers are obtained using an elongated substrate. In this study, sintering processes of PZT ($Pb(Zr_{0.53}Ti_{0.47})O_3$) fibers prepared by electrospinning were optimized through the TGA and XRD analyses. The crystal structure and microstructure of the piezoelectric fibers were investigated by XRD, FE-SEM and TEM.

은나노와이어 함침 유연 스펀지 전극 제조 (Fabrication of flexible sponge electrodes using Ag nanowires)

  • 박경렬;유세훈;류정호;민성욱
    • 한국결정성장학회지
    • /
    • 제30권5호
    • /
    • pp.189-193
    • /
    • 2020
  • 최근 웨어러블 센서를 구현하기 위한 유연전극을 제조하기 위한 다양한 방법들이 논의되고 있다. 현재 개발되고 있는 웨어러블 센서기기는 피부의 신축성에 따라 잘 늘어나야 하고, 신축성을 부여하기 위해, 다양한 고분자 기판이 사용되어지고 있다. 따라서, 본 논문에서는 스펀지 기반 신축성 기판에 고탄성의 은나노와이어 전극을 형성하고 신축의 정도에 따른 전기적 특성 평가를 진행하였다. 제조 방법은 습식합성법을 이용하여 은나노와이어를 성장시켰고 플라즈마 표면처리된 폴리우레탄 기반의 스펀지에 함침시킨 후 저온에서 열처리를 하였다. 특히, 스펀지의 플라즈마 표면처리는 은나노와 이어의 균일한 코팅을 가능케 하였다. 유연 스펀지 전극은 160회 이상의 반복 인장-수축 사이클에서 신뢰성있는 전기 저항변화를 보여주었다.

CNT-Ag 복합패드가 Cu/Au 범프의 플립칩 접속저항에 미치는 영향 (Effect of CNT-Ag Composite Pad on the Contact Resistance of Flip-Chip Joints Processed with Cu/Au Bumps)

  • 최정열;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제22권3호
    • /
    • pp.39-44
    • /
    • 2015
  • 이방성 전도접착제를 이용하여 Cu/Au 칩 범프를 Cu 기판 배선에 플립칩 실장한 접속부에 대해 CNT-Ag 복합패드가 접속저항에 미치는 영향을 연구하였다. CNT-Ag 복합패드가 내재된 플립칩 접속부가 CNT-Ag 복합패드가 없는 접속부에 비해 더 낮은 접속저항을 나타내었다. 각기 25 MPa, 50 MPa 및 100 MPa의 본딩압력에서 CNT-Ag 복합패드가 내재된 접속부는 $164m{\Omega}$, $141m{\Omega}$$132m{\Omega}$의 평균 접속저항을 나타내었으며, CNT-Ag 복합패드를 형성하지 않은 접속부는 $200m{\Omega}$, $150m{\Omega}$$140m{\Omega}$의 평균 접속저항을 나타내었다.