• Title/Summary/Keyword: stress~strain relationship

Search Result 607, Processing Time 0.027 seconds

Modified Equivalent Radius Approach in Evaluating Stress-Strain Relationship in Torsional Test

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 2008
  • Determination of stress-strain relationship in torsional tests is complicated due to nonuniform stress-strain variation occurring linearly with the radius in a soil specimen in torsion. The equivalent radius approach is adequate when calculating strain at low to intermediate strains, however, the approach is less accurate when performing the test at higher strain levels. The modified equivalent radius approach was developed to account for the problem more precisely. This approach was extended to generate the plots of equivalent radius ratio versus strain using modified hyperbolic and Ramberg-Osgood models. Results showed the effects of soil nonlinearity on the equivalent radius ratio curves were observed. Curve fitting was also performed to find the stress-strain relationship by fitting the theoretical torque-rotation relationship to measured torque-rotation relationship.

Undrained Behavior of $K_0$ Consolidated Clay due to Strain Rate ($K_0$ 압밀 점토의 변형율 의존 비배수 전단거동)

  • Kim, Jin-Won;Lee, Chang-Ho;Lee, Moon-Ju;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1039-1046
    • /
    • 2005
  • After clay particles have been sediment isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the laboratory test should be enforced under $K_0$-stress system and should obtain the characteristics of normally consolidated clays. And relationship of stress-strain on clay is effected on not only method of consolidation but also characteristic of visco-plastic behavior. Saturated clay is effected more this trend. So, rate of strain is considered to understand exact stress-strain relationship. In this study, the series of undrained triaxial compression tests were preformed on remolded specimens which was made by slurry of clay, consolidated under $K_0$-stress systems. And the undrained triaxial compression test were preformed to examine behavior of stress-strain relationship due to rate of shear strain relationship due to rate of shear strain.

  • PDF

An efficient method for the compressive behavior of FRP-confined concrete cylinders

  • Fan, Xinglang;Wu, Zhimin;Wu, Yufei;Zheng, Jianjun
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.499-518
    • /
    • 2013
  • Fiber reinforced polymer (FRP) jackets have been widely used as an effective tool for the strengthening and rehabilitation of concrete structures, especially damaged concrete columns. Therefore, a clear understanding of the compressive behavior of FRP-confined concrete is essential. The objective of this paper is to develop a simple efficient method for predicting the compressive strength, the axial strain at the peak stress, and the stress-strain relationship of FRP-confined concrete. In this method, a compressive strength model is established based on Jefferson's failure surface. With the proposed strength model, the strength of FRP-confined concrete can be estimated more precisely. The axial strain at the peak stress is then evaluated using a damage-based formula. Finally, a modified stress-strain relationship is derived based on Lam and Teng's model. The validity of the proposed compressive strength and strain models and the modified stress-strain relationship is verified with a wide range of experimental results collected from the research literature and obtained from the self-conducted test. It can be concluded that, as a competitive alternative, the proposed method can be used to predict the compressive behavior of FRP-confined concrete with reasonable accuracy.

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests- (응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.

Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials (고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석)

  • 이상호;장일영;김효진;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF

Development of Stress-Strain Relationship Considering Strength and Age of Concrete (콘크리트의 강도와 재령을 고려한 응력-변형률 관계식의 개발)

  • 오태근;이성태;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.447-456
    • /
    • 2001
  • Many investigators have tried to represent the nonlinear behavior of stress-strain relationship of concrete using mathematical curves. Most of empirical expressions for stress-strain relationship, however, have focused on old age concrete, and were not able to represent well the behavior of concrete at an early age. Where wide understanding on the behavior of concrete from early age to old age is very important in evaluating the durability and service life of concrete structures. In this paper, effect of 5 different strength levels and ages of from 12 hours to 28 days on compressive stress-strain relationship was observed experimentally and analytically. Tests were carried out on $\phi$100${\times}$200mm cylindrical specimens water-cured at 20${\pm}$3$^{\circ}C$. An analytical expression of stress-stain relationship with strength and age was developed using regression analyses on experimental results. For the verification of the proposed model, the model was compared with present and existing experimental data and some existing models. The analysis shows that the proposed model predicts well experimental data and describes well effect of strength and age on stress-strain relationship.

A Study on the Constitutive Behavior of Undisturbed Weathered Soils at Small-to-Large Strain Conditions (미소변형률 및 대변형률 조건에서 불교란 풍화토의 구성거동에 관한 연구)

  • 오세붕;이영휘;안영대
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.139-146
    • /
    • 2001
  • Undrained triaxial tests were peformed for a weathered soil, which includes local measurement using LVDT The behavior from small In large strain conditions could be evaluated consistently through a triaxial test, The stress-strain relationship of undisturbed samples were compared with the disturbed and the shear moduli in the small strain level had the almost same values. Especially the shear moduli were mostly affected by the initial condition of water contents. An anisotropic hardening model based on the total stress concept could predict the stress-strain relationship accurately, which makes it possible to analyze the geotechnical problem reasonably for the weathered soil.

  • PDF

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

Thermal stress of concrete structure at high temperature considering inelastic thermal strain change (고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포)

  • 강석원;홍성걸;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

Prediction of Shear Stress-Strain Relationship of Reinforced Concrete Columns using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단응력-전단변형률 관계 예측)

  • Kim Sang-Woo;Chai Hyee-Dai;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.361-364
    • /
    • 2004
  • This paper predicts the shear stress-strain relationship of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered bending moment and axial force effects. Nine columns with various shear span-to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Shear stress-strain relationship obtained from TATM was agreed well with test results conducted by bis study than other truss models.

  • PDF