• Title/Summary/Keyword: stress-wave parameter

Search Result 67, Processing Time 0.022 seconds

Parameter Study of Harmonics Generation Using One-dimensional Model of Closed Crack (닫힘균열의 1차원 모델을 이용한 고조파 발생에 대한 파라미터 연구)

  • Yang, Sung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.398-403
    • /
    • 2011
  • When a crack exists under a residual stress, for example in welds, the crack can be closed and it shows non symmetric behavior for tension and compression. Ultrasonic detection method for those nonlinear cracks has been developed recently. The method uses the higher order harmonics generating at the crack surface. In this study, parameter study was carried out for the analysis of the harmonics generation at a nonlinear contact interface as a preliminary study for general 3-dimensional cracks. One-dimensional problem with simple bilinear behavior for the contacting surface was considered. The amplitude of second harmonic to the fundamental wave was obtained for various stiffness ratios, incident frequencies, and the contacting layer thicknesses.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks (역전파신경회로망을 이용한 피로손상모델링에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF

FEM and Ultrasonic Testing for Adhesive Joints Strength of Thin Metal Sheets (금속재료의 접착이음부에 대한 유한요소해석과 초음파실험)

  • Oh, S. K.;Hwang, Y. T.;Jang, C. S.;Oh, S. S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.726-730
    • /
    • 1997
  • One approach to testing the suitability of an adhesive joint for a particular application is to build and test to destruction a representativc, sample of the joini. The noncdestructive test will not measure strength directly but will measure a parameter which can be correlated to strength. It is thercforc, essential that a suitable nondestructive rest is chosen and that its results are correctly intcrpreted. In this paper, typical Ultrasonic Signal Analysis in adhesive joints are cvaluatcci together with Interface Stress from the result of Finite Elenlent Method.

  • PDF

A Numerical Analysis of Supersonic Impinging Jet Flows on Curved Surfaces using Upwind Wavier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 굴곡면에 충돌하는 초음속 제트유동의 수치 해석적 연구)

  • Seo Jeong Il;Song Dong Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.229-232
    • /
    • 2002
  • For the purpose of Thermal Protection Material design problem, a numerical analysis of axisymmetric high temperature supersonic impinging jet flows of exhaust gas from combustor on curved surfaces has been accomplished. A modifed CSCM Upwind Navier-Stokes method which is able to cure the carbuncle Phenomena has been developed to study strong shock wave structure and thermodynamic wall properties such as pressure and heat transfer rate on various curved surfaces. The results show that the maximum heat transfer rate which is the most important parameter affecting thermo-chemical surface ablation on the plate did not occur at the center of jet impingement, but rather on a circle slightly away from the center of impingement and the shear stress distribution alone the wall is similar to the wall heat transfer late distribution.

  • PDF

Fractional order thermoelastic wave assessment in a two-dimension medium with voids

  • Hobiny, Aatef D.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.85-93
    • /
    • 2020
  • In this article, the generalized thermoelastic theory with fractional derivative is presented to estimate the variation of temperature, the components of stress, the components of displacement and the changes in volume fraction field in two-dimensional porous media. Easily, the exact solutions in the Laplace domain are obtained. By using Laplace and Fourier transformations with the eigenvalues method, the physical quantities are obtained analytically. The numerical results for all the physical quantities considered are implemented and presented graphically. The results display that the present model with the fractional derivative is reduced to the Lord and Shulman (LS) and the classical dynamical coupled (CT) theories when the fractional parameter is equivalent to one and the delay time is equal to zero and respectively.

Joints Strength Evaluation of light Structure material (경량 구조재료의 접합강도평가)

  • Jang C. S.;Yi W.;Oh S. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.234-238
    • /
    • 2005
  • One approach to testing the suitability of a adhesive joint for a particular application is to build and test to destruction of a representative sample of the joint. The nondestructive test will not measure strength directly but will measure a parameter which can be correlated to the strength. It is therefore, essential that a suitable nondestructive test is chosen and its results are correctly interpreted. In this paper, typical ultrasonic signal analysis in adhesive joints are evaluated together with interface stress from the result of finite element analysis.

  • PDF

Effect of the gravity on a nonlocal micropolar thermoelastic media with the multi-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Erigen's nonlocal thermoelasticity model is used to study the effect of viscosity on a micropolar thermoelastic solid in the context of the multi-phase-lag model. The harmonic wave analysis technique is employed to convert partial differential equations to ordinary differential equations to get the solution to the problem. The physical fields have been presented graphically for the nonlocal micropolar thermoelastic solid. Comparisons are made with the results of three theories different in the presence and absence of viscosity as well as the gravity field. Comparisons are made with the results of three theories different for different values of the nonlocal parameter. Numerical computations are carried out with the help of Matlab software.

Effects of drinking water containing trimethyl glycine or ascorbic acid on growth performance and blood parameter in ducks under scorching heat wave (폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과)

  • Kang, H.K.;Park, B.S.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.411-420
    • /
    • 2016
  • The objective of this study was to determine the effect of drinking water containing trimethyl glycine or ascorbic acid on growth performance and blood parameter profiles of duck exposed to scorching heat stress. A total of 480 ducks were randomly assigned to the following eight experiment groups for 42 days : control group C with general water, treatment group 1 (T1) with drinking water containing 100 ppm ascorbic acid, treatment group 2 (T2) with drinking water containing 200 ppm ascorbic acid, treatment group 3 (T3) with drinking water containing 300 ppm ascorbic acid, treatment group 4 (T4) with drinking water containing 400 ppm trimethyl glycine, treatment group 5 (T5) with drinking water containing 800 ppm trimethyl glycine, treatment group 6 (T6) with drinking water containing 1,200 ppm trimethyl glycine, treatment group 7 (T7) with electrolytes of KCl (0.5%) + $NaHCO_3$ (1.0%)+NaCl (0.5%). Our results revealed that the body weights and feed intakes of treatment groups, especially T3 and T6, were increased compared to the control group, where as the feed conversion ratios of treatment groups were decreased (p<0.05). Blood levels of total cholesterol, triglyceride, LDL-C, glucose, AST, ALT and pH in treatment groups were lower compared to those in the control group (p<0.05). Blood levels of red blood cell, platelets profiles, electrolyte and gas in treatment groups were higher compared to those of the control group (p<0.05).

A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra (광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구)

  • Park, Jun-Bum;Kang, Chan-Hoe;Kim, Kyung-Su;Choung, Joon-Mo;Yoo, Chang-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.