• Title/Summary/Keyword: stress-state model

Search Result 665, Processing Time 0.028 seconds

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

An Effective Stress Based Constitutive Model on the Behavior under $K_0$ Condition ($K_0$조건하 거동에 대한 유효응력 구성모델)

  • Oh, Se-Boong;Kim, Wook;Park, Hui-Beom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.121-128
    • /
    • 2004
  • A constiutive model was proposed in order to model dilatancy under $K_0$ conditions. The model includes an anisotropic hardening rule with bounding surface and hypothetical peak stress ratio and dilatancy function which are dependent on a state parameter. The triaxial stress-strain relationship under $K_0$ conditions was calculated reasonably by the proposed model. In particular the model could consistently predict dilatancy in volume change, softening with peak strength and small strain behavior.

  • PDF

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

Case study of the mining-induced stress and fracture network evolution in longwall top coal caving

  • Li, Cong;Xie, Jing;He, Zhiqiang;Deng, Guangdi;Yang, Bengao;Yang, Mingqing
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • The evolution of the mining-induced fracture network formed during longwall top coal caving (LTCC) has a great influence on the gas drainage, roof control, top coal recovery ratio and engineering safety of aquifers. To reveal the evolution of the mining-induced stress and fracture network formed during LTCC, the fracture network in front of the working face was observed by borehole video experiments. A discrete element model was established by the universal discrete element code (UDEC) to explore the local stress distribution. The regression relationship between the fractal dimension of the fracture network and mining stress was established. The results revealed the following: (1) The mining disturbance had the most severe impact on the borehole depth range between approximately 10 m and 25 m. (2) The distribution of fractures was related to the lithology and its integrity. The coal seam was mainly microfractures, which formed a complex fracture network. The hard rock stratum was mainly included longitudinal cracks and separated fissures. (3) Through a numerical simulation, the stress distribution in front of the mining face and the development of the fracturing of the overlying rock were obtained. There was a quadratic relationship between the fractal dimension of the fractures and the mining stress. The results obtained herein will provide a reference for engineering projects under similar geological conditions.

The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction (저소성 실트의 비배수 전단거동 특성과 예측)

  • Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.61-70
    • /
    • 2008
  • In this study, undrained triaxial (CU) tests were performed on low-plastic silt of Nakdong River in order to investigate the undrained shear behavior of low-plastic silt. In experimental results, the deviator stress showed the hardening behavior after reaching its yield stress like the tendency of common sand, and the pore water pressure was gradually decreased to critical state after the maximum value. In the effective stress paths, regardless of consolidation stress or overconsolidation ratios, both a critical state line (CSL) and a phase transformation line (PTL) exist in the effective stress path that is similar to the case of sand. The behavior of low-plastic silt was predicted by the Modified Cam-Clay (MCC) model, the Jordan and the Elman-jordan model that is artificial neural network model. According to predicted results, the overall undrained shear behavior of low-plastic silt could not be predicted with the MCC model, but the Jordan and Elman-Jordan model showed well-matched experiment results.

  • PDF

Study on Convergence Technique through Strength Analysis of Stabilizer Link by Type (스테빌라이저 링크의 종류별 강도 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • In this study, the lower arm is connected and fixed at the model of the automotive stabilizer link as the moment is applied. There are models of 1, 2 and 3 as a length control type, a general type and a single body type respectively. These models are investigated by performing the convergence technique through the design and the strength analysis with CATIA and ANSYS. As the maximum equivalent stress of model 3 has the least, model 3 can endure the highest load among three models. As the fatigue analysis, model 3 has the minimum blocks as the frequency of stress state, model 3 becomes also safest among three models. As models of 1, 2 are in the order of the next safety, the number of blocks becomes larger as the frequency of stress state and the instability becomes higher. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

A Study on the Development of Weight Controlling Health Behavioral Model in Women (여성의 체중조절행위 모형 구축)

  • Jeun, Yeun-Suk;Lee, Jong-Ryol;Park, Chun-Man
    • Korean Journal of Health Education and Promotion
    • /
    • v.23 no.4
    • /
    • pp.125-153
    • /
    • 2006
  • This study was intended to describe women's weight controlling by creating a hypothetic model on the weight adjustment behavior and by examining a cause and effect relationship, and to contribute to countermeasures for practicing their promotion of health and improving the quality of life through creating a predictable model. The subject of study was women who utilize the beauty shop located in Seoul, Busan and Daegu and the study period was 12 weeks from July 10 to September 30 in 2004. Gathered 1093 person's general specialty related with weight adjustment and analyzed covariance to prove the hypothesis using statistics compiled from authentic sources. Also proved coincidence of the hypothetical model. Exogenous variables of the hypothetical model are composed of recognition of her body shape, fatness level, age, stress, and self-respect. Endogenous variables are health- control mind, recognized health state, self-efficacy, intention, and behavior of weight adjustment. There were 5 measured variables for exogenous variable(x). There were 8 measured variable(y) for exogenous variable. And coincidence $x^2=297.38$, standard $x^2(x^2/df)=7.08$, GFI=0.962, AGFI=0.917, NFI=0.875, TLI=0.794, CFI=0.889, RMSEA=0.075. The result of hypothesis had an epoch-making record that 20 out of 27 hypothesis was proved positive way. Generally weight adjustment has been highly seen in housewives, the married and the old age. Health control mind seems to be high as fatness level, age, and self-respect are high and low stress. Recognized health state is high as age and self-respect are high and low stress. However, it is not much related with recognition of her body shape and fatness level. If age, self-respect, health control mind, recognized health state and self-efficacy are high intention of behavior is also high, but intention of behavior has no relation with recognition of her body shape, fatness level and stress. If fatness level, age, self-respect, health control mind, recognized health state and self-efficacy and intention of behavior are high, execution of weight adjustment will be high. However, recognized health state and stress has no influence for weight adjustment. To increase the coincidence of hypothesis and take a simple model I modified a model and then I got the coincidence $x^2=215.62$, standard $x^2(x^2/df)=6.34$, GFI=0.970, AGFI=0.931, NFI=0.902, TLI=0.901, CFI=0.915, RMSEA=0.070. This result is a bit better than original hypothetical model's so that this model might be more suitable. In this modification model, the factors of weight adjustment seems to be high according to this order self-efficacy, recognized health state, age, intention, health control mind, self-respect, fatness level and stress. With this result I suggest ; 1. Enforcement of IR that everybody can be controlled weight adjustment herself and continuous education, which is related with regular habit (food, exercise, restriction of a favorite food and behavior training etc.) is also needed. 2. Because self-efficacy is influenced to execution of weight adjustment specific program which can increase self-efficacy should have to develop and we need to utilize it to take care of herself. 3. To protect fatness and be active weight adjustment the peculiar program including the concept of self-respect, recognized health state, health control mind and intention must be developed and not only women but also all of people should be educated. 4. This hypothetical model is forecasting women's weight adjustment behavior and can be utilized for fundamental data to increase those people's health.

3-D Concrete Model Using Non-associated Flow Rule in Dilatant-Softening Region of Multi-axial Stress State (3차원 솔리드요소 및 비상관 소성흐름 법칙을 이용한 콘크리트의 응력해석)

  • Seong, Dae Jeong;Choi, Jung Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Cohesive and frictional materials such as concrete and soil are pressure dependent. In general, failure criterion for such materials inclined with respect to positive hydrostatic axis in Haigh-Westergaard stress space. Consequently, inelastic volumetric strain always positive with associated flow rule. In this study, to overcome this shortcoming, non-associated flow rule which controls volumetric component of plastic flow is adopted. Numerical analysis based on a constitutive model using nonuniform hardening plasticity with five parameter failure criterion and non-associated flow rule has conducted to predict concrete behavior under multi-axial stress state and verified with experimental result.