• Title/Summary/Keyword: stress-induced

Search Result 5,105, Processing Time 0.043 seconds

Permeability Evaluation in Cold Joint Concrete with Mineral Admixture under Compressive and Tensile Loading (혼화재료를 고려한 압축 및 인장상태에서 콜드조인트 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Mun, Jin-Man;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.576-587
    • /
    • 2015
  • This paper presents a quantitative evaluation of water permeability in concrete with cold joint considering mineral admixture and loading conditions. Concrete samples with OPC (Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) are prepared considering 0.6 of W/C ratio and 40% of replacement. 30% and 60% loading levels for compression and 60% loading level for tension are induced to concrete samples. In compression conditions, the permeability in control case shows $2.41{\times}10^{-11}m/s$ in OPC concrete, and it changes to $2.07{\times}10^{-11}m/s$ (30% of peak) and $2.36{\times}10^{-11}m/s$ (60% of peak). The results in GGBFS concrete shows the same trend, which yields $2.17{\times}10^{-11}m/s$ (control), $1.65{\times}10^{-11}m/s$ (30% of peak), and $1.96{\times}10^{-11}m/s$ (60% of peak), respectively. In tensile conditions, the permeability increases from $2.37{\times}10^{-11}m/s$ (control) to $2.67{\times}10^{-11}m/s$ (60% of peak) while that in GGBFS concrete increases from $2.17{\times}10^{-11}m/s$ (control) to $2.24{\times}10^{-11}m/s$ (60% of peak). Permeability coefficients decreases in 30% of compressive level but increases in 60% level, while results in tensile level increases rapidly. This shows pore structure in concrete is condensed and with loading and permeability increases due to micro-cracking. Permeability evaluation considering the effects of loading conditions, cold joint, and GGBFS is verified to be important since water permeability greatly changes due to their effects.

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

Characterization of Salt Tolerant Rice Mutant Lines Derived from Azetidine-2-Carboxylic Acid Resistant Cell Lines Induced by Gamma Ray Irradiation (AZCA 저항성 돌연변이 세포주로부터 선발 육성만 내염성 벼 돌연변이 계통의 특성 검정)

  • Song, Jae-Young;Kim, Dong-Sub;Lee, Geung-Joo;Lee, In-Sok;Kang, Kwon-Kyoo;Yun, Song-Joong;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • To develop rice (Oryza sativa L.) cultivars to be planted on salt-affected sites, cell lines with enhanced proline content and resistance to growth inhibition by Azetidine-2-carboxylic acid (AZCA), a proline analogue, were screened out among calli irradiated with gamma ray of 50, 70, 90, and 120 Gy. The calli had been derived from embryo culture of the cultivar Donganbyeo. Selected AZCA resistant lines that had high proline accumulation were used as sources for selection of NaCl resistant lines. To determine an optimum concentration for selection of NaCl resistant lines, Donganbyeo seeds were initially cultured on the media containing various NaCl concentrations (0 to 2.5%) for 40 days, and 1.5% NaCl concentration was determined as the optimum concentration. One hundred sixteen salt-tolerant (ST) lines were selected from bulked 20,000 seeds of the AZCA resistant $M_{3}$ seeds in the medium containing 1.5% NaCl. The putative 33 lines ($M_{4}$ generation) considered with salt-tolerance were further analyzed for salt tolerance, amino acid and ion contents, and expression patterns of the salt tolerance-related genes. Out of the 33 lines, 7 lines were confirmed to have superior salt tolerance. Based on growth comparison of the entries, the selected mutant lines exhibited greater shoot length with average 1.5 times, root length with 1.3 times, root numbers with 1.1 times, and fresh weight with 1.5 times than control. Proline contents were increased maximum 20%, 100% and 20% in the leaf, seed and callus, respectively, of the selected lines. Compared to control, amino acid contents of the mutants were 24 to 29%, 49 to 143%, 32 to 60% higher in the leaf, seed and callus, respectively. The ratio of $Na^{+}/K^{+}$ for most of the ST-lines were lower than that of control, ranging from 1.0 to 3.8 for the leaf and 11.5 to 28.5 for the root, while the control had 3.5 and 32.9 in the leaf and root, respectively. The transcription patterns for the P5CS and NHXI genes observed by RT-PCR analysis indicated that these genes were actively expressed under salt stress. The selected mutants will be useful for the development of rice cultivar resistant to salt stress.

Antioxidant Activity of Extract from Walnut Uuglans sinensis Dode) and Its Protective Effect on Cell Injury and Lipid Peroxidation in Renal Cortical Slices (호두 추출물의 항산화 활성과 신피질에서 세포 손상과 지질과산화 방지효과)

  • Bae Kae Sun;Hwang Eul Chul;Kwon Chae Hwa;Kim Soon Hee;Choi Chun Whan
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.106-111
    • /
    • 2005
  • To investigate the antioxidant activity of extract from the raw walnut, Juglans sinensis Dode, we prepared five fractions (methanol (MeOH), dichloromethane $(CH_2Cl_2)$, ethyl acetate (EtOAc), n-buthanol (n-BuOH) and dehydrogen monooxide $(H_2O)$ fractions) and examined. The effect of walnut extract on the oxidative stress was investigated in vitro. The DPPH (2,2-Di (4-tert-octylphenyl)-1-picrylhydrazyl) free radical scavenging activity of extract from raw walnut was shown in the following order: $EtOAc\;fraction layer. The result showed that the highest activity $(0.56{\mu}g/ml,\;IC_{50}.)$ was observed in EtOAc fraction, whereas n-BuOH fraction, MeOH fraction, $CH_2O_2$ fraction and $H_2O$ layer of $IC_{50}$ were $2.34{\mu}g//ml,\;3.88{\mu}g/ml,\;8.06{\mu}g/ml,\;and\;8.19{\mu}g/ml$, respectively. The radical scavenging activity assay of each fraction showed that the antioxidative activity was observed in the following order: EtOAc fraction $(74.27\pm1.56\%)>MeOH\;fraction\;(60.76\pm3.4\%)>n-BuOH\;fraction\;(59.32\pm0.88\%)>H_2O\;layer\;(41.69\pm2.06\%)$. These results revealed that all fractions, except for $CH_2Cl_2$ fraction, showed high antioxidative activity. Furthermore, the peroxynitrite $(ONOO^-)$ scavenging activity was assayed in each fraction. The result showed that the $ONOO^-$ scavenging activity of EtOAc fraction, MeOH fraction and n-BuOH fraction from raw walnut was $95.14\pm0.36\%,\; 90.02\pm1.19\%\;and\;89.41\pm0.81\%$, respectively. The tert-butylhydroperoxide (t-BHP) treatment in vitro increased lactate dehydrogenase release and lipid peroxidation in renal cortical slices. Such changes were completely prevented by addition of MeOH fraction, EtOAc fraction and n-BuOH fraction of walnut. These results indicate that the walnut extract exerts the benedicial effect against t-BHP-induced cell injury and its effect may be due to antioxidant action. In addition, it is suggested that walnut extract might be developed as the effective scavenger for the prevention of oxidative stress.

Amended Soil with Biopolymer Positively Affects the Growth of Camelina sativa L. Under Drought Stress (가뭄 조건 하에서 바이오폴리머 혼합 토양이 Camelina sativa L.의 생장에 미치는 긍정적 영향)

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Lee, Hyeon-Sook;Sin, Jung-Ho;Kim, Eun-Suk;Woo, Hyo-Seop;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • The biopolymer (BP) used in this study is mainly composed of xanthan gum and ${\beta}$-glucan derived from microorganism and has been introduced as a novel material for soil stabilization. However, the broad applicability of BP has been suggested in the field of geotechnical engineering while little information is available about the effects of BP on the vegetation. The goal of this study is to find the BP effects on the growth of Camelina sativa L. (Camelina) under drought condition. For more thorough evaluation of BP effects on the plant growth, we examined not only morphological but also physiological traits and gene expression patterns. After 25 days of drought treatment from germination in the soil amended with 0, 0.25, 0.5, and 1% BP, we observed that the BP concentration was strongly correlated the growth of Camelina. When plants were grown under drought stress, Camelina in 0.5% BP mixture showed better physiological parameters of the leaf stomatal conductance, electrolyte leakage and relative water content compared to those in control soil without BP. Plant recovery rate after re-watering was higher and the development of lateral root was lower in BP amended soil. RNA expression of Camelina leaf treated with/without drought for 7 and 10 days showed that aquaporin genes transporting solutes at bio-membrane, CsPIP1;4, 2;1, 2;6 and TIP1;2, 2;1, were induced more in the plants with BP amendment and drought treatment. These results suggest that the soil amended with BP has a positive effect on the transport of nutrients and waters into Camelina by improving water retention in soil under drought condition.

Antioxidative Activities of the Codonopsis lanceolata Extract in vitro and in vivo (더덕(Codonopsis lanceolata) 추출물의 in vitro 및 in vivo 항산화 효과)

  • Kim, Soo-Hyun;Chung, Mi-Ja;Jang, Hae-Dong;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.193-202
    • /
    • 2010
  • In vitro activities of Codonopsis lanceolata (CL) 70% ethanol extract and its fractions (hexane, chloroform, ethyl acetate, butanol and water) were examined by total polyphenol content, reducing power, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-$\beta$-picrylhydrazyl (DPPH), and oxygen radical absorbance capacity (ORAC) assays. The ethyl acetate fraction from CL ethanol extract (CLEA) showed the highest total polyphenol content (22.7 mg/g) among five fractions, and also exhibited an excellent reducing power (0.42~1.27 at $250\sim1,000\;{\mu}g/mL$). CLEA at $100\sim400\;{\mu}g/mL$ concentrations had 27.7~70.3% of ABTS radical scavenging activity and the highest DPPH radical scavenging activity (81.6% at $400\;{\mu}g/mL$). CLEA had dominantly higher $ORAC_{{ROO}{\cdot}}$activity compared to other fractions. CLEA and butanol fraction had significantly higher $ORAC_{{OH}{\cdot}}$ activities than 70% ethanol extract, hexane, chloroform and water fractions. The CLEA exhibited the highest antioxidant activity in CL 70% ethanol extract and its fractions. Thus, effect of CLEA treatment on antioxidant gene expression under the oxidative stress conditions by a high fat diet in animal model was studied by microarray and RT-PCR methods. The 31 antioxidant genes were expressed but the genes were not up-regulated at least a two-fold by CLEA treatment. We concluded that CLEA does not have an indirect antioxidant effect but a direct antioxidant effect by up-regulation of antioxidant genes in high fat diet-induced obese mice.

Effect of Hericium erinaceus Mycelia Supplementation on the Oxidative Stress and Inflammation Processes Stimulated by LPS and Their Mechanisms in BALB/C Mice (BALB/C Mice에서 노루궁뎅이버섯 균사체 보충이 LPS로 인한 산화적 스트레스와 염증 반응에 미치는 효과 및 기전)

  • Jang, Ji-Hyun;Noh, Kyung-Hee;Choi, Ji-Na;Jin, Kyong-Suk;Shin, Jin-Hyuk;On, Joon-Ho;Cho, Chung-Won;Jeong, Woo-Sik;Kim, Myo-Jeong;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.227-236
    • /
    • 2010
  • This study was carried out to investigate the anti-oxidative and anti-inflammatory actions of Hericium erinaceus mycelia in BALB/C mice injected with lopopolysaccharide (LPS), called endotoxin. Mice (6 weeks of age) weighing approximately $24.73\pm0.11$ g were divided into 5 groups and were fed on the experimental diets containing Hericium erinaceus mycelia powder (HMP) for 1 week. Experimental groups were NC (normal control), HMP-C (HMP control), LC (LPS control), HMP 3%, and HMP 10%. Endotoxin shock was induced by intraperitoneal injection of LPS (100 mg/kg BW). NC and HMP-C groups were injected with saline solution (100 mg/kg BW). Food efficiency ratio were significantly (p<0.05) decreased in the HMP supplementation groups. Total fat and $\beta$-glucan excretion were higher in HMP supplementation groups than NC and LC groups, while plasma TG level was not different among groups. Plasma ALT levels were significantly (p<0.05) lower in the HMP supplementation groups than in LC group at 8 hr after LPS injection, while tumor necrosis factor-$\alpha$ and interleukine-6 levels of plasma were not different among groups. Hepatic superoxide dismutase, glutathione-reductase (GSH-red), and glutathione-peroxidase activities were higher in the HMP supplementation groups than in LC group at 4 hr after intraperitoneal injection of LPS. Hepatic GSH levels and protein expression of GSH-red was significantly (p<0.05) higher in the HMP supplemented groups than in LC group at 1 hr, 4 hr and 8 hr after LPS injection. From the above results, it is concluded that Hericium erinaceus mycelia may ameliorate hepatic oxidative stress by LPS through the elevation of hepatic glutathione level and antioxidant enzyme activities, which support the hepatoprotective effect of Hericium erinaceus mycelia.

Significance of tibial intra-tunnel fixation at Arthroscopic ACL Reconstruction with hamstring tendon (Second-look Arthroscopic Evalution) (자가 슬괵건을 이용한 전방 십자인대 재건술시 경골측 골 터널내 고정의 의의 (이차관절경 검사의 평가))

  • Kim, Young-Chang ;Seo, Seung-Suk;Jung, Kyung-Chil;Gwak, Hey-Chul;Kim, Yoon-Jun;Kim, Jin-Seok
    • Journal of the Korean Arthroscopy Society
    • /
    • v.10 no.2
    • /
    • pp.165-172
    • /
    • 2006
  • Purpose: The purpose of this study is to evaluate the effects of intratunnel fixation in the tibial side on the arthroscopic ACL reconstruction with quadruple hamstring tendon at the second look arthroscopy. Materials and Method: From Dec 1999 to May 2005, we arthroscopically reexamined 32 cases who had been done arthroscopic ACL reconstruction with quadruple hamstring tendons. Hamstring tendons of all cases were fixed at femoral side with RigidfixTM. At the tibial side hamstring tendons were fixed only Post-tie (Group I) or Post-tie combined with IntrafixTM (Group II). At the time of second look arthroscopy mean age of cases was 30 years and mean duration for second look arthroscopy was 21.3 months. We analyzed the results with IKDC score, KT-1000 arthrometer under anesthesia, Telos stress radiography, tibial tunnel widening on the radiography and second look arthroscopic findings. Results: Group II had more superior than group I at side to side differences with KT-1000 and Telos stress radiograph, IKDC score, but the differences were insignificant. At arthroscopic evaluation, Group ll also had more superior than group I at graft tension and graft appearance, graft synovialization, but the differences were insignificant. Tibial tunnel widening in the knee AP radiograph was 2.3 mm in Group I and 1.7 mm in Group II and the difference was significant. (P=0.042) Conclusions: Additional procedure of tibial intratunnel fixation in arthroscopic ACL reconstruction with autogenous hamstring tendon significantly prohibited from tibial tunnel widening but clinical results, radiologic joint stability, findings in second look arthroscopy were insignificantly different. We concluded that Post-tie itself induced satisfactory clinical results, joint stability and graft maturation and that tibial tunnel widening did not affect the results.

  • PDF

Investigation into the Ethanol Tolerance Mechanism by Regulation of Gene Expression (유전자 상호발현 조절을 통한 에탄올 내성 메커니즘의 규명)

  • Jung, Hoe-Myung;Choi, Ho-Jung;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Ethanol is a very valuable material, however, it is also a source of stress, as the accumulation of ethanol in a medium inhibits cell viability and decreases productivity of the target product. Therefore, the ethanol tolerance of yeast, which is closely related to ethanol productivity, is an important factor in industrial ethanol production. In this study, the YDJ1 and PEP5 genes were selected as target genes for elucidating ethanol-tolerant mechanisms by analyzing the expression regulation of these genes. The pA-YDJ1 and pA-PEP5 plasmids containing YDJ1 and PEP5 genes under an ADH1 promoter, respectively, were constructed and transformed into BY4742 (host strain), BY4742△ydj1, and BY4742△pep5 strains. The ethanol tolerance in the BY4742△ydj1/ pA-YDJ1 and BY4742△pep5/pA-PEP5 transformants was restored by overexpression of the YDJ1 and PEP5 genes to the host strain level. The YDJ1 and PEP5 genes were also introduced into the double gene disruptant (BY4742△ydj1△pep5) to investigate the expression regulation of the YDJ1 and PEP5 genes. The simultaneous overexpression of the YDJ1 and PEP5 genes restored ethanol tolerance to the 90% level of the BY4742 strain under 8% ethanol stress. The YDJ1 gene induced more overexpression of the PEP5 gene in the BY4742△ydj1 △pep5/pA-YDJ1, pA-PEP5 strain, suggesting that the YDJ1 gene partially regulates the expression of the PEP5 gene as an upstream regulator.

The Impact of Cooking on the Antioxidative and Antigenotoxic Effects of Rice (호화과정이 백미, 현미, 발아현미의 항산화 및 항유전 독성 활성에 미치는 영향)

  • Kim, So-Yun;Seo, Bo-Young;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1370-1377
    • /
    • 2013
  • Rice is widely grown in Asia and is one of the major dietary staples in the world. Also, rice contains antioxidants which can prevent from oxidative stress related diseases, including cancer, atherosclerosis, and diabetes. Because the rice is consumed cooked, the effect of the cooking process on the antioxidative and antigenotoxic properties of rice is lacking. The aim of this study was to determine the effects of cooking on the antioxidant and antigenotoxic effects of white rice (WR), brown rice (BR), and germinated brown rice (GBR). The antioxidant activities were measured for total phenolic content (TPC), DPPH radical scavenging activity (DPPH RSA), total antioxidant capacity (TRAP), and oxygen radical absorbance capacity (ORAC). The highest TPC was found in uncooked BR (18.4 mg gallic acid equivalent/100 g). After cooking, the TPC of WR significantly increased, while the TPC of BR and GBR were reduced by 47.7% and 36.7%, respectively. The $IC_{50}$ for DPPH RSA was not significantly different in uncooked rice, while the DPPH RSA of WR and GBR decreased after cooking and the DPPH RSA of BR significantly increased. TRAP values in BR and GBR increased after cooking, while the value of WR decreased. The ORAC values of uncooked WR, BR, and GBR were 5.3, 4.3, and $3.9{\mu}M$ trolox equivalent at the concentration of $50{\mu}g/mL$. After cooking, the ORAC value of BR remained unchanged, while the value of GBR increased and the value of WR decreased. The antigenotoxic activities of WR, BR, and GBR were determined by measuring the inhibitory effects of $H_2O_2$-induced DNA damage on human leukocytes using the comet assay. The results showed that all rice tested showed a significant antigenotoxic effect against oxidative stress, except for the cooked white rice. Overall, our results indicate the addition of brown rice and/or germinated brown rice to cooked white rice is a good option for improving the benefits of rice.