• Title/Summary/Keyword: stress sensors

Search Result 285, Processing Time 0.026 seconds

Stress-Sensors with High-Sensitivity Using the Combined Meandering-Patterns

  • Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this work, the combined meandering-pattern stress-sensors were presented in order to achieve the high sensitivity of stress sensors. Compared to the previous works, which have been using the single meandering-pattern stress-sensors, the sensitivity was approximately observed to increase by 30%~70%. Also, in this paper, more simple and convenient stress-measurement method was presented.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

A study on the mechanical behavior of the optical fiber sensors embedded in the composite laminate (복합재료 적층판에 삽입된 광섬유 센서의 기계적 특성에 관한 연구)

  • Shin, Kum-Cheol;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.440-447
    • /
    • 1999
  • Tensile stress loaded on smart composite structures and thermal stress occurred during the during process of the smart composite materials with embedded optical fiber sensors affect directly the mechanical behavior of the embedded optical fiber sensors within the smart composite structures. Stress distribution within the optical fiber sensors varies with respect to the stacking sequence of the composite laminate and the coating conditions of the optical fibers. The cracks occurred within the composite laminate affect not only the fracture of the composite laminate but also the fracture of the optical fiber sensors embedded within the composite laminate. In this study, firstly, stress distribution of the optical fiber sensors embedded within the composite laminate which is subjected to the tensile and thermal stresses was analyzed using Finite Element Method. And, secondly, the effect of the stacking sequence of the composite laminate and the coating conditions of the optical fiber sensors on the stress distribution of the optical fiber sensors was investigated. Finally, the effect of the crack occurred within the smart composite laminate on the fracture behavior of the optical fiber sensors was also observed through the tensile test.

  • PDF

A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors (광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구)

  • Kim Won-Seok;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF

A New Antistiction Method Using Polymer Suspension for Fabrication with Polysilicon Micromachining (다결정 실리콘 마이크로머시닝 제작 시 폴리머 지지를 이용한 옆 방향 정착방지 방법의 제안)

  • Lim, Hyung-Taek;Yoon, Choong-Hyun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3331-3333
    • /
    • 1999
  • A novel antistiction method using photo resist is proposed and verified to improve the yield of polysilicon micromachining process. $7.5{\mu}m-thick$ polysilicon is used as a structural layer. Residual stress and stress gradient originated from polysilicon deposition with LPCVD process is relaxed by doping and thermal treatment. The stress gradient of stress-free polysilicon layer is $-0.755MPa/{\mu}m$.

  • PDF

Study on FBG Sensors for Hull Stress Monitoring (선체 응력 모니터링을 위한 FBG 센서에 대한 연구)

  • Kim, Yu-Mi;Lee, Nam-Kwon;Lee, Seung-Hwan;Bae, Dong-Myung;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.276-282
    • /
    • 2012
  • Vessels receive stress during their navigations as well as during their cargo operations. This stress may cause damages to the hull and may result in accidents. So the hull stress monitoring system(HSMS) is recommended in order to prevent these accidents. In this paper, we manufactured fiber Bragg grating(FBG) sensor and the model ship for towing tank experiments. The strain characteristics of the model ship on the water wave were measured through the towing tank experiment. The FBG sensors and electric strain gauges were attached on the connection jig, and then the characteristics of the FBG sensor were compared with those of the electric strain gauge. The strain of model ship was increased according to the increment of the amplitude of water wave. In particular, the largest strain was measured in the center of the model ship. As the wave period increased, the strain of model ship was decreased.

Mathematical model for assessment of the safety of over three-span steel beams based on average strains from long gage optic sensor (평균변형률을 이용한 3경간 이상 연속 철골보의 안전성 평가 기법)

  • Jung Seong-Moon;Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.159-166
    • /
    • 2006
  • Although the strain distribution along the length of a beam in buildings or infrastructures is non-uniform, most fiber optic sensors are point sensors that can measure the strain only at a local point of a beam. Long gage fiber optic sensors that measure integrated strain over a relatively long length can consider strain variation. This type of sensor was found to be efficient and useful for monitoring large-scale structures. On the other hand, the maximum strain or stress in a beam can not be measured with long gage optic sensors. However, for the assessment of the safety of multi-span steel beams subjected to various vertical loads, the maximum strain or stress measured during monitoring is required for comparison with the allowable stress of the beam calculated by a design code. Therefore, in this paper, mathematical models are presented for determination of the maximum values of strains in more three-span steel beams based on the average strains measured by long gage optic sensors.

  • PDF

Human Stress Monitoring through Measurement of Physiological Signals (생체 신호 측정을 통한 스트레스 모니터링)

  • Natsagdorj, Ulziibayar;Moon, Kwang-Seok;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • As the human population increases in the world, the ratio of health doctors is rapidly decreasing. Therefore, it is an urgent need to create new technologies to monitor the physical and mental health of people during their daily life. In particular, negative mental states like depression and anxiety are big problems in modern societies. Usually this happens due to stressful situations during everyday activities including work. This paper presents a machine learning approach to reliably estimating the level of human mental stress using wearable physiological sensors. And also, this paper presents an Android- and Arduino-based stress monitoring and relief system.

Stress Measuring Method for Beam-Column Members with Long Gauge Fiber Optic Sensors (LGFOS를 이용한 보-기둥 부재의 부재력 계측 기법 개발)

  • Park, Hyo-Seon;Baek, Jae-Min;Lee, Hong-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.9-16
    • /
    • 2006
  • In structural health monitoring, the safety of structural members are assessed by the level of stress measured by various strain sensors based on different sensing mechanisms. Since most existing strain sensors used for health monitoring system can cover a relatively small range of structural members, it is very difficult to measure the maximum value of the member subjected to varying amount and types of loads with those point sensors. The reliability of assessed safety of a member may be improved by increasing the number of sensors. It may not be also realistic to increase the number of sensors to overcome these drawbacks. In this paper, a stress measuring method for beam-column members is developed by estimating the maximum stress based on the average strains obtained from long gauge sensor. The average strain from long gage fiber optic sensor is transformed into the maximum strain by multiplication of the modification factor derived in this research.