• Title/Summary/Keyword: stress resistance

Search Result 2,305, Processing Time 0.026 seconds

Physiological Characteristics and GABA Production of Lactobacillus plantarum K74 isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum K74의 GABA 생산 및 생리적 특성)

  • Park, Sun-Young;Shim, Hye-Young;Kim, Kee-Sung;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2013
  • Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the central nervous system of animals, has several physiological effects including anti-hypertensive, diuretic, tranquilizing, and anti-stress properties, in humans. The purpose of this study was to investigate Lactobacillus plantarum K74, which was isolated from kimchi and selected as a strain with a high ability to produce GABA, to develop a new starter culture for fermented milk production. L. plantarum K74 produced $134.52{\mu}g/mL$ GABA in MRS broth containing 1% MSG, $212.27{\mu}g/mL$ GABA in MRS broth containing 2% MSG, and $234.63{\mu}g/mL$ GABA in MRS broth containing 3% MSG. The optimum growth temperature of L. plantarum K74 was $34^{\circ}C$, reaching a pH of 4.4 after 18 hours of growth. L. plantarum K74 was most sensitive to novobiocin out of 16 different antibiotics tested, and was most resistant to kanamycin and polymyxin B. L. plantarum K74 did not produce ${\beta}$-glucuronidase, a carcinogenic enzyme, and was comparatively tolerant to bile juice and low pH. Furthermore, it displayed resistance to Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus at rates of 54.9%, 46.3%, and 0.7%, respectively.

  • PDF

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Seismic Evaluation of Beam-Column Joint Specimens of RC Special Moment Frames (철근콘크리트 특수모멘트골조의 보-기둥 접합부 실험체의 내진성능평가)

  • Lee, Ki-Hak;Seok, Keun-Yung;Jung, Chan-Woo;Shin, Young-Shik;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete special moment frames. All of the test specimens were classified as special moment frame (SMF), based on the design and detailing requirements of the ACI 318-02 provisions. The acceptance criteria, originally defined for steel moment frame connections in the 1997 edition of the AISC Seismic provisions, were used to evaluate the beam-column joints of the reinforced concrete moment frames. A total of 39 test specimens were examined in detail. Most of the joints that satisfy the design requirements for special moment frame structures were found to be ductile up to a plastic rotation of 3% without any major degradation in strength. This is mainly due to the stringent ACI 318-02 requirements for special moment frame joints. The presence of transverse beams increases confinement and shear resistance of joints, which results in better performance than for joints without transverse beams. All of the SMF connections that satisfy the ACI 318-02 limitations on joint shear stress turned out to meet the acceptance criteria.

  • PDF

A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature (고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구)

  • Choi, Kwang-Ho;Lee, Joong-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • This research was planned to evaluate the structural performance of post tensioned(PT) concrete member subjected to fire. Prime objective was to suggest some techniques to evaluate the performance of post tensioned concrete beam and slab exposed to high temperature through experiment. To accomplish this objective, the following two scopes have been proceeded to verify the strength reducing ratio of strands and find out the difference of resisting force at the PT concrete members exposed to high temperature through the fire test. The properties of prestressing steel(tendon) in PT concrete beam and slab under variable temperatures were reviewed. The test of this study was shown that stress relaxation occurred at high temperature, and some restoration of tensional force appeared as it got cooling down. The residual tension of the post tensioned beams at 4 hours after reaching the target temperature were 70% at $400^{\circ}C$, 10% at $600^{\circ}C$ and 2% at $800^{\circ}C$. The post tensioned slabs were 94% at $400^{\circ}C$, 84.5% at $600^{\circ}C$ and 62% at $800^{\circ}C$. The reason why the residual tension loss of the post tensioned slab was relatively small was considered to be that the slab was exposed just one side to high temperature and the strength of the strand was restored larger than that of beam. Also, it was confirmed that the post tensioned member inevitably experienced the loss of strength by fire damage, and restoration design of the member should be required to compensate for the value as much as lost strength.

INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS (도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향)

  • Lim, Ae-Ran;Lim, Ho-Nam;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.165-191
    • /
    • 1990
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoration, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of $5{\times}5{\times}25mm$. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respecitvely. Porcelain glass transition temperatures and expansion values were derived alloy-porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal-porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated: 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than that of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly 5. Alloy-porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

Study on the Durability of Composite Tilting Pad Journal Bearing for Turbo Compressor System under Oil-cut Situation (터보 컴프레셔용 복합재료 틸팅 패드 저널 베어링의 오일 공급 중단 상황에서의 내구성 연구)

  • Choe, Kang-Yeong;Jung, Min-Hye;You, Jun-Il;Song, Seung-A;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • The tilting pad journal bearing for the turbo compressor application has a role to support high speed and heavy loading rotor. White metal has been widely used for the bearing material but the conventional bearing is immediately suspended and induces serious serious damage to the rotor under the unexpected oil cut situation or the insufficient oil film formation. The carbon fiber reinforced composite having high specific stiffness, specific strength and excellent tribological characteristics can solve these seizure problems. In this work, the study on the durability of high thermal resistance carbon fiber/epoxy composite tilting pad journal bearing under oil cut situation was conducted. The material properties of the composite materials including tensile, compressive and interlaminar properties were measured at room and high temperature of oil cut situation. To investigate the possibility of failure of composite tilting pad journal bearing under oil cut situation, the stress distribution of the composite bearing was analyzed via finite element analysis and the Tsai-Wu Failure index was calculated. To verify the failure analysis results, the oil cut tests for the composite tilting pad journal bearing were conducted using industrial test bench.

Stability Traits of Probiotics Isolated from Korean on Spices and Propolis (향신료와 프로폴리스에 대한 한국형 유산균의 안정성)

  • Lee, Do Kyung;Park, Jae Eun;Kim, Kyung Tae;Do, Myung Jin;Chung, Myung Jun;Lee, Gwa Soo;Kim, Jin Eung;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • their survival rates could be affected by various factors such as diet, stress, senescence, and antibiotics. This study was performed to evaluate the influence of various spices (garlic, ginger, scallion, onion, Chungyang red pepper, and red pepper) which have antimicrobial properties and used frequently in Korean diet, and propolis on probiotics isolated from Koreans. As a result, most Korean probiotic strains were resistant to all spices tested and propolis, and the growth rates of some Korean probiotic strains (Bifidobacterium lactis, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles) were even increased by specific spices or propolis. But on the other hand, the growth rates of most of european probiotic strains were reduced by various spices or propolis, and the growth rates of a few european probiotic strains (L. helveticus, S. thermophiles) were greatly decreased in the presence of specific spices. Likewise, all commercial probiotic products including Korean probiotic strains were rarely affected by spices tested. However, european probiotic product tended to be greatly reduced by garlic, onion, scallion, and propolis. Therefore, these results indicate that probiotic strains isolated from Korean have the strong viability and resistance to various spices with antimicrobial properties, so that they might be appropriate for Korean intestine.

Test methodology of acceleration life test on feeder cable assembly (Feeder Cable Assembly의 가속수명시험법 개발)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.62-68
    • /
    • 2016
  • The feeder cable assembly is an automotive part used for telecommunication. If it malfunctions, the control and safety of the automobile can be put at risk. ALT (Accelerated Life Testing) is a testing process for products in which they are subjected to conditions (stress, strain, temperatures, etc.) in excess of their normal service parameters in an attempt to uncover faults and potential modes of failure in a short amount of time. Failure is caused by defects in the design, process, quality, or application of the part, and these defects are the underlying causes of failure or which initiate a process leading to failure. Thermal shock occurs when a thermal gradient causes different parts of an object to expand by different amounts. Thermal shock testing is performed to determine the ability of parts and components to withstand sudden changes in temperature. In this research, the main causes of failure of the feeder cable assembly were snapping, shorting and electro-pressure resistance failure. Using the Coffin-Manson model for ALT, the normal conditions were from Tmax = $80^{\circ}C$ to Tmin = $-40^{\circ}C$, the accelerated testing conditions were from Tmax = $120^{\circ}C$ to Tmin = $-60^{\circ}C$, the AF (Acceleration Factor) was 2.25 and the testing time was reduced from 1,000 cycles to 444 cycles. Using the Bxlife test, the number of samples was 5, the required life was B0.04%.10years, in the acceleration condition, 747 cycles were obtained. After the thermal shock test under different conditions, the feeder cable assembly was examined by a network analyzer and compared with the Weibull distribution modulus parameter. The results obtained showed good results in acceleration life test mode. For the same reliability rate, the testing time was decreased by a quarter using ALT.

The Installation Effect and Optimal Pipe Sizes of an Anti-Wind Net by Computational Analysis (전산 해석에 의한 파풍망의 설치 효과와 최적 파이프 규격)

  • Yum, Sung-Hyun;Kwon, Ki-Jeong;Sung, Si-Heung;Choi, Young-Don
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.430-439
    • /
    • 2007
  • This study was carried out to(1) visualize the installation effect of an anti-wind net; (2) evaluate structural stability of typical anti-wind nets in Jeju; and (3) present the optimal specification of pipes in an anti-wind net for maximum instant wind velocities of 40 m/s and 45 m/s. The analyses were done for anti-wind nets with a mesh of 4 mm and a height of 3 m by using CFX and ANSYS. The results showed that the wind went down due to flow resistance when passing through an. anti-wind net. The anti-wind net with the supporting pipe being installed every two main columns was certainly unstable because the main column not sustained by the supporting pipe became cantilever. With regard to the position of a fixing point of the supporting pipe, von Mises stress on pipes was certainly increased as vertical positions of the supporting pipe were changed to be too lower or higher than an adequate position but there was little difference according to horizontal positions. The adequate vertical position was $2{\sim}2.5\;m$ high from the ground. For a maximum instant wind velocity of 40 m/s, the optimal specification of pipes was a main column of ${\varphi}48.1{\times}2.1$ t@2,000, cross beams(bottom and top) of ${\varphi}26.7{\times}1.9\;t$, cross beams(center) of ${\varphi}33.5{\times}2.1$ t/2ea and a supporting pipe of ${\varphi}31.8{\times}1.5$ t@2,000. In case of a maximum instant wind velocity of 45 m/s, the optimal specification of pipes with structural stability was a main column of ${\varphi}48.6{\times}3.25$ t@2,000, cross beams(bottom and top) of ${\varphi}26.7{\times}1.9\;t$, cross beams(center) of ${\varphi}48.1{\times}2.1$ t/2ea and a supporting pipe of ${\varphi}31.8{\times}1.5$ t@2,000.

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF