• Title/Summary/Keyword: stress domain

Search Result 711, Processing Time 0.022 seconds

Autophagic Degradation of Caspase-8 Protects U87MG Cells Against H2O2-induced Oxidative Stress

  • Zhang, Yi-Bo;Zhao, Wei;Zeng, Rui-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4095-4099
    • /
    • 2013
  • Oxidative stress induces apoptosis in many cellular systems including glioblastoma cells, with caspase-8 activation was regarded as a major contribution to $H_2O_2$-induced cell death. This study focused on the role of the autophagic protein p62 in $H_2O_2$-induced apoptosis in U87MG cells. Oxidative stress was applied with $H_2O_2$, and cell apoptosis and viability were measured with use of caspase inhibitors or autophagic mediators or siRNA p62, GFP-p62 and GFP-p62-UBA (del) transfection. We found that $H_2O_2$-induced U87MG cell death was correlated with caspase-8. To understand the role of p62 in MG132-induced cell death, the levels of p62/SQSTM1 or autophagy in U87MG cells were modulated with biochemical or genetic methods. The results showed that the over-expression of wild type p62/SQSTM1 significantly reduced $H_2O_2$ induced cell death, but knockdown of p62 aggravated the process. In addition, inhibition of autophagy promoted p62 and active caspase-8 increasing $H_2O_2$-induced apoptosis while induction of autophagy manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 required its C-terminus UBA domain to attenuate $H_2O_2$ cytotoxity by inhibition of caspase-8 activity. Our results indicated that p62/SQSTM1 was a potential contributor to mediate caspase-8 activation by autophagy in oxidative stress process.

An Investigation of High Temperature Creep Phenomena by the Method of Caustics (코스틱스방법을 이용한 고온 크리프 파괴현상에 관한 연구)

  • 이억섭;홍성경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2543-2553
    • /
    • 1994
  • Caustics method has been applied successfully to determine the fracture parameters such as stress intensity factor and the J-integral for elastic and/or elastic-plastic stress field around the crack tip. For stress fields at the vicinity of crack tip in the creep domain, no experimental report concerning fracture mechanics parameters by using the caustics method has been published up to date. This study investigated creep behavior at the vicinity of crack tips at high temperature($175^{\circ}C$) and attempted to determine of proper fracture parameters for A1 5086 H24 specimens by using the caustics method. The results obtained from the limited experimental investigation are as follows; $J_{th}/J_{caus}$ is found to approach to 1 more rapidly than $K_{th}/K_{caus}$ does during incipient period(within 80 minutes). It is confirmed that experimental $K_{caus}$ approached to theoretical $K_{th}$ after 80 minutes by analyzing the ratio of $K_{th}$ to $K_{caus}$. Unlike the case of room temperature, it is confirmed experimentally that caustics diameter enlarged gradually even the distance between specimen and screen keeps constant. It showed that initial curve of the caustics was initially located in the plastic zone, but it grew out rapidly into the elastic zone for Al 5086 H24 at $175^{\circ}C$. It is confirmed that caustics is a function of time, temperature and distance between specimen and screen at high temperature.

Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제1부 이론적 배경과 실험적 연구)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.445-453
    • /
    • 2015
  • The stress triaxiality and lode angle are known to be most dominant fracture parameters in ductile materials. This paper proposes a three-dimensional failure strain surface for a ductile steel, called a low-temperature high-tensile steel (EH36), using average stress triaxiality and average normalized lode parameter, along with briefly introducing their theoretical background. It is an extension of previous works by Choung et al. (2011; 2012; 2014a; 2014b) and Choung and Nam (2013), in which a two-dimensional failure strain locus was presented. A series of tests for specially designed specimens that were expected to fail in the shear mode, shear-tension mode, and compression mode was conducted to develop a three-dimensional fracture surface covering wide ranges for the two parameters. This paper discusses the test procedures for three different tests in detail. The tensile force versus stroke data are presented as the results of these tests and will be used for the verification of numerical simulations and fracture identifications in Part II.

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.

The Change of Heart Rate Variability in Anxiety Disorder after Given Physical or Psychological Stress (불안장애 환자에서 육체적 및 정신적 스트레스 시 심박변이도의 변화)

  • Cho, Min-Kyung;Park, Doo-Heum;Yu, Jaehak;Ryu, Seung-Ho;Ha, Ji-Hyeon
    • Sleep Medicine and Psychophysiology
    • /
    • v.21 no.2
    • /
    • pp.69-73
    • /
    • 2014
  • Objectives: This study was designed to assess the change of heart rate variability (HRV) at resting, upright, and psychological stress in anxiety disorder patients. Methods: HRV was measured at resting, upright, and psychological stress states in 60 anxiety disorder patients. We used visual analogue scale (VAS) score to assess tension and stress severity. Beck depression inventory (BDI) and state trait anxiety inventories I and II (STAI-I and II) were used to assess depression and anxiety severity. Differences between HRV indices were evaluated using paired t-tests. Gender difference analysis was accomplished with ANCOVA. Results: SDNN (Standard deviation of normal RR intervals) and low frequency/high frequency (LF/HF) were significantly increased, while NN50, pNN50, and normalized HF (nHF) were significantly decreased in the upright position compared to resting state (p < 0.01). SDNN, root mean square of the differences of successive normal to normal intervals, and LF/HF were significantly increased, while nHF was significantly decreased in the psychological stress state compared to resting state (p < 0.01). SDNN, NN50, pNN50 were significantly lower in upright position compared to psychological stress and nVLF, nLF, nHF, and LF/HF showed no significant differences between them. Conclusion: The LF/HF ratio was significantly increased after both physical and psychological stress in anxiety disorder, but did not show a significant difference between these two stresses. Significant differences of SDNN, NN50, and pNN50 without any differences of nVLF, nLF, nHF, and LF/HF between two stresses might suggest that frequency domain analysis is more specific than time domain analysis.

Ultrasonic Pulses Characteristics in Lightweight Fine Aggregate Concrete under Various Load Histories (하중 이력에 따른 경량 잔골재 콘크리트의 초음파 특성)

  • Yoo, Kyung-Suk;Kim, Jee-Sang;Kim, Ik-Beam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 2014
  • One of the widely used NDT(Non-destructive techniques) is the ultrasonic pulse velocity (USPV) method, which determines the travel time of the ultrasonic pulse through the tested materials and most studies were focused on the results expressed in time domain. However, the signal of ultrasonic pulse in time domain can be transformed into frequency domain, through Fast fourier transform(FFT) to give more useful informations. This paper shows a comparison of changes in the pulse velocity and frequency domain signals of concrete for various load histories using lightweight fine aggregates. The strength prediction equation for normal concrete using USPV cannot be used to estimate lightweight fine aggregate concrete strength. The signals in frequency domain of ultrasonic pulse of lightweight fine aggregate concrete does not show any significant difference comparing with those of normal concrete. The increases in stress levels of concrete change the pulse velocities and maximum frequencies, however the apparent relationship between themselves can not be found in this experiment.

Development of School Health Nursing Phenomena in Korea by Retrospective Method of ICNP (ICNP의 후향적 개발방법에 의한 한국의 학교간호현상)

  • Kim, Young-Im;Young, Soon-Ok;Wang, Myoung-Ja;Kim, Chung-Nam;Kim, Hyeon-Suk;Park, Tae-Nam;Chung, Mi-Ja;Hyun, Hye-Jin
    • Research in Community and Public Health Nursing
    • /
    • v.13 no.4
    • /
    • pp.595-607
    • /
    • 2002
  • The objectives of this study were to identify the phenomena of school health nursing at schools in Korea and to contribute to building a school health domain of International Classification for Nursing Practice. A retrospective method was used in this study to develop ICNP during the period from July to October 200l. The procedure of the study involved choosing nursing phenomena using preliminary terms from the reports on the field of school health nursing practice documented by nursing students in 10 different nursing colleges. The detail procedures of the study were as follows. 1) Choosing nursing phenomena by using preliminary terms 2) Choosing the characteristics of school health nursing practice from the selected nursing phenomena 3) In order to make a consensus regarding the appropriate characteristics of phenomena. 15 study group members re-categorized the nursing phenomena through 5 times of cyber meetings and 3 times of formal meetings. 4) To verify each characteristic, 5 community nursing faculties and 25 school health nurses participated in the procedure to give scores on nursing characteristics. 5) Classification of the definite nursing phenomena and characteristics. Following the 5 step procedures, school health nursing phenomena were categorized into human and environmental domains. Human domains were classified into human behavioral and functional domains. Environmental domains were classified into physical and psychosocial domains. The essential characteristics of each phenomena were selected when it obtains the mean score of 3.0 or over at the related characteristics. The human behavioral domain consisted of 7 phenomena including risk for spinal disorder, inadequate dietary habit, inadequate weight control, smoking and substance abuse, inadequate stress management, inadequate sex related coping strategies and inadequate accident management. The human functional domain consisted of 6 phenomena including inadequate eye care and visual management, risk for respiratory disorder, inadequate dental health care, inappropriate infectious disease control, risk for gastrointestinal disorder, and lack of sexual identity. The physical environmental domain consisted of 6 phenomena including risk for incident at inside classroom, risk for incident at outside classroom, risk for incident around school, risk for exposure to hazardous facilities around school. inadequate garbage and disposal management, and inadequate physical environment for learning. The psychosocial domain included impaired social interaction at school. Each phenomenon was composed of 2 to 8 characteristics and all phenomena will include a total number of 85 characteristics. The phenomena of school health nursing in Korea partially confirmed school health architecture of ICNP. Further study on verification of school health nursing phenomena in Korea needs to be done to support the findings of this study through review of literature on nursing classifications or field studies.

  • PDF

A Study on the Effect of the Forest Healing Programs on Teachers' Stress and PANAS (산림치유프로그램이 교사의 스트레스와 긍정·부정감정에 미치는 효과)

  • Park, Suk-Hee;Yeon, Poung-Sik;Hong, Chang-Won;Yeo, Eun-Hee;Han, Sang-Mi;Lee, Hye-Young;Lee, Hyo-Jung;Kang, Jae-Woo;Cho, Hyun-Sol;Kim, Youn-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.6
    • /
    • pp.606-614
    • /
    • 2017
  • This study analyzed the effect of forest therapy program on reduction of stress of teachers and their positive and negative emotions based on the survey of 221 teachers who participated in the overnight Happiness School Edu-healing Camp held for teachers by the National Center for Forest Healing. For data analysis, a paired sample t-test was conducted using the SPSS 24.0 program to examine the difference in the stress reaction index of teachers and their positive and negative emotions before and after their participation in the forest therapy program. The results indicated that teachers who participated in the program showed a significant decrease in the stress response index and the values of sub-domain such as physical symptoms, depression symptoms, and anger symptoms. Moreover, all teachers exhibited a significant decrease in stress. This result verifies that the forest therapy program is effective in reducing the stress of teachers and their negative emotions. These results are expected to be used to promote more active forest therapy programs for teachers exposed to a high level of stress.

Isolation and Characterization of a Basic Leucine Zipper Gene in Poplar (Populus alba × P. glandulosa) (현사시나무에서 Basic Leucine Zipper 유전자의 분리와 특성 구명)

  • Yoon, Seo-Kyung;Lee, Hyoshin;Bae, Eun-Kyung;Choi, Young-Im;Kim, Joon-Hyeok;Noh, Seol Ah
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.189-195
    • /
    • 2014
  • Basic leucine zipper (bZIP) protein is a regulatory transcription factor that plays crucial roles in growth, development and stress response of plant. In this study, we isolated a PagbZIP1 gene that belonged to Group SE3 of bZIP from Populus alba ${\times}$ P. glandulosa, and investigated its expressional characteristics. The PagbZIP1 is 844 base pairs long and encodes a putative 144-amino-acid protein with an expected molecular mass of 16.6 kDa. The PagbZIP1 has two conserved domains including the basic and leucine zipper portions. Southern blot analysis revealed that two copies of the gene are presented in the poplar genome. PagbZIP1 was specifically expressed in the root and suspension cells. Moreover, the expression of PagbZIP1 was induced by drought, salt, cold and ABA. Therefore, our results indicated that PagbZIP1 might be expressed in response to abiotic stress through the ABA-mediated signaling pathway in poplar.

The crystal growth and ferroelasticity of the crystal $KMgCl_3$ ($KMgCl_3$결정의 육성과 강탄성적 성질에 관한 연구)

  • 조용찬;정희태;박상언;박진습;황윤회;정세영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.544-549
    • /
    • 1998
  • The single crystal of $KMgCl_3$ was grown in Ar atmosphere by Czochralski method for the first time. For the stoichiometric composition, $K_2MgCl_4$ crystal was obtained, and the nonstoichiometric method was used for the $KMgCl_3$ crystal growth. The phase transition sequences of $KMgCl_3$ were investigated by the DTA, DSC and the ferroelastic properties by using the high temperature polarizing microscope and the thermomechanical system. The temperature dependences of the ferroelastic domains and the spontaneous strain obtained from the stress-strain hysteresis loops were analyzed.

  • PDF