• 제목/요약/키워드: stress degradation studies

검색결과 59건 처리시간 0.026초

Cathepsin B Inhibitor, E-64, Affects Preimplantation Development, Apoptosis and Oxidative Stress in Pig Embryos

  • Son, Hyeong-Hoon;Min, Sung-Hun;Yeon, Ji-Yeong;Kim, Jin-Woo;Park, Soo-Yong;Lee, Yong-Hee;Jeong, Pil-Soo;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.175-183
    • /
    • 2013
  • Cathepsin B is abundantly expressed peptidase of the papain family in the lysosomes, and closely related to the cell degradation system such as apoptosis, necrosis and autophagy. Abnormal degradation of organelles often occurs due to release of cathepsin B into the cytoplasm. Many studies have been reported that relationship between cathepsin B and intracellular mechanisms in various cell types, but porcine embryos has not yet been reported. Therefore, this study evaluated the effect of cathepsin B inhibitor (E-64) on preimplantation developmental competence and quality of porcine embryos focusing on apoptosis and oxidative stress. The expression of cathepsin B mRNA in porcine embryos was gradually decreased in inverse proportion to E-64 concentration by using real-time RT-PCR. When putative zygotes were cultured with E-64 for 24 h, the rates of early cleavage and blastocyst development were decreased by increasing E-64 concentration. However, the rate of blastocyst development in $5{\mu}M$ treated group was similar to the control. On the other hand, both the index of apoptotic and reactive oxygen species (ROS) of blastocysts were significantly decreased in the $5{\mu}M$ E-64 treated group compared with control. We also examined the mRNA expression levels of apoptosis related genes in the blastocysts derived from $5{\mu}M$ E-64 treated and non-treated groups. Expression of the pro-apoptotic Bax gene was shown to be decreased in the E-64 treated blastocyst group, whereas expression of the anti-apoptotic Bcl-xL gene was increased. Taken together, these results suggest that proper inhibition of cathepsin B at early development stage embryos improves the quality of blastocysts, which may be related to not only the apoptosis reduction but also the oxidative stress reduction in porcine embryos.

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test

  • Hwang, Byung Chan;Oh, So Hyeong;Lee, Moo Seok;Lee, Dong Hoon;Park, Kwon Pil
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2290-2295
    • /
    • 2018
  • An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and $90^{\circ}C$). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.

Nrf2활성화를 통한 삼출건비탕(蔘朮健脾湯)의 간세포보호효과 (Hepatoprotective effect of Samchulgeonbi-tang via Nrf2 Activation)

  • 김예림;진효정;박상미;변성희;송창현;김상찬
    • 대한한의학방제학회지
    • /
    • 제31권2호
    • /
    • pp.111-124
    • /
    • 2023
  • Objectives : Oxidative stress is an important cause of many diseases including liver injury. Therefore, adequate regulation of oxidative stress plays a pivotal role in maintaining liver function. Until recently, there has been no studies on the hepatoprotective effect of Samchulgeonbi-tang (SCGBT). Therefore, the hepatoprotective effect of SCGBT was investigated in HepG2 cells. In this study, oxidative stress was induced by arachidonic acid (AA) and iron. Methods : To analyze the hepatoprotective effects of SCGBT against oxidative stress induced by AA + iron, the cell viability, apoptosis-related proteins and intracellular ROS, glutathione (GSH), and mitochondrial membrane permeability (MMP) were measured. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) transcription activation and expressions of Nrf2 target gene were analyzed through immunoblot analysis. Results : SCGBT increased the cell viability from AA + iron - induced cell death and inhibited apoptosis by regulating apoptosis related proteins. SCGBT protected cells by inhibiting ROS production, GSH depletion, and MMP degradation against AA + iron induced oxidative stress. Furthermore, Nrf2 activation was increased by SCGBT, and the Nrf2 target genes were also activated by SCGBT. Conclusions : These results suggest that the SCGBT has a hepatocyte protection effect and antioxidant effect from AA + iron induced oxidative stress.

Nrf2 활성화를 통한 익위승양탕(益胃升陽湯)의 간세포 보호 효과 (Hepatoprotective effect of Ikwiseungyang-tang via Nrf2 activation)

  • 진효정;박상미;김은옥;김상찬
    • 대한한의학방제학회지
    • /
    • 제29권4호
    • /
    • pp.167-179
    • /
    • 2021
  • Objectives : Oxidative stress is a important cause of liver disease, and regulation of oxidative stress is essential to maintain the normal metabolic function of the liver. Until a recent date, there has been no studies on the hepatoprotective effect of Ikwiseungyang-tang (IWSYT). Therefore, this study aims to demonstrate the hepatoprotective effect of IWSYT and its related molecular mechanisms on arachidonic acid (AA) + iron induced oxidative stress model in HepG2 cells. Methods : To determine the cytoprotective effect of IWSYT against AA + iron-induced oxidative stress, cell viability, apoptosis-related proteins, intracellular reactive oxygen species (ROS), GSH, and mitochondrial membrane potential (MMP) were measured. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation was analyzed by immunoblot analysis. In addition, Nrf2 transcription activation through ARE binding was measured by reporter gene assays, and the expression of the Nrf2 target antioxidant genes were confirmed by immunoblot analysis. Results : IWSYT increased cell viability from cell death induced by AA + Iron, and inhibited apoptosis by regulating apoptosis-related proteins. Furthermore, IWSYT protected cells by inhibiting intracellular ROS production, GSH depletion, and MMP degradation. Nrf2 activation was increased by IWSYT, and Nrf2 target genes were activated by IWSYT too. Conclusions : These results suggest that IWSYT can protect hepatocytes from oxidative stress through Nrf2 activation and can be potentially applied in the prevention and treatment of liver damage.

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Anti-cancer Mechanism of Docosahexaenoic Acid in Pancreatic Carcinogenesis: A Mini-review

  • Park, Mirae;Kim, Hyeyoung
    • Journal of Cancer Prevention
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2017
  • Pancreatic cancer is a highly aggressive malignant tumor of the digestive system and radical resection, which is available to very few patients, might be the only possibility for cure. Since therapeutic choices are limited at the advanced stage, prevention is more important for reducing incidence in high-risk individuals with family history of pancreatic cancer. Epidemiological studies have shown that a high consumption of fish oil or ${\omega}3-polyunsaturated$ fatty acids reduces the risk of pancreatic cancers. Dietary fish oil supplementation has shown to suppress pancreatic cancer development in animal models. Previous experimental studies revealed that several hallmarks of cancer involved in the pathogenesis of pancreatic cancer, such as the resistance to apoptosis, hyper-proliferation with abnormal $Wnt/{\beta}-catenin$ signaling, expression of pro-angiogenic growth factors, and invasion. Docosahexaenoic acid (DHA) is a ${\omega}3-polyunsaturated$ fatty acid and rich in cold oceanic fish oil. DHA shows anti-cancer activity by inducing oxidative stress and apoptosis, inhibiting $Wnt/{\beta}-catenin$ signaling, and decreasing extracellular matrix degradation and expression of pro-angiogenic factors in pancreatic cancer cells. This review will summarize anti-cancer mechanism of DHA in pancreatic carcinogenesis based on the recent studies.

수소 첨가에 의한 비정질 ITO 박막의 기계적 특성 연구 (Effect of Hydrogen on Mechanical S tability of Amorphous In-Sn-O thin films for flexible electronics)

  • 김서한;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.56-56
    • /
    • 2018
  • Transparent conductive oxides (TCOs) have attracted attention due to their high electrical conductivity and optical transparency in the visible region. Consequently, TCOs have been widely used as electrode materials in various electronic devices such as flat panel displays and solar cells. Previous studies on TCOs focused on their electrical and optical performances; there have been numerous attempts to improve these properties, such as chemical doping and crystallinity enhancement. Recently, due to rapidly increasing demand for flexible electronics, the academic interest in the mechanical stability of materials has come to the fore as a major issue. In particular, long-term stability under bending is a crucial requirement for flexible electrodes; however, research on this feature is still in the nascent stage. Hydrogen-incorporated amorphous In-Sn-O (a-ITO) thin films were fabricated by introducing hydrogen gas during deposition. The hydrogen concentration in the film was determined by secondary ion mass spectrometry and was found to vary from $4.7{\times}10^{20}$ to $8.1{\times}10^{20}cm^{-3}$ with increasing $H_2$ flow rate. The mechanical stability of the a-ITO thin films dramatically improved because of hydrogen incorporation, without any observable degradation in their electrical or optical properties. With increasing hydrogen concentration, the compressive residual stress gradually decreased and the subgap absorption at around 3.1 eV was suppressed. Considering that the residual stress and subgap absorption mainly originated from defects, hydrogen may be a promising candidate for defect passivation in flexible electronics.

  • PDF

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Autophagy in Tumorigenesis and Cancer Treatment

  • Xu, Dong-Wei;Zhang, Guan-Qing;Wang, Zong-Wei;Xu, Xiao-Yin;Liu, Tong-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2167-2175
    • /
    • 2015
  • Autophagy is a self-digestion process, wrapping cytoplasmic proteins or organelles to form vesicles for degradation in lysosomes. The process plays an important role in the maintenance of intracellular homostasis. Here we overview articles on autophagy and cancer/tumors in Pubmed and found 327 articles. Autophagy exists in many tumors and is involved in cell malignant transformation and tumor cell growth. In early phases of tumorigenesis, autophagy clears the abnormally folded proteins and dysfunctional organelles such as mitochondria. Autophagy can also inhibit cell stress responses and prevent genetic damage. When a tumor develops, autophagy helps tumor cells survive nutritional deficiencies and hypoxic conditions. Studies of autophagy in the occurrence and progression of tumors should provide new therapeutic strategies for tumors.