Browse > Article
http://dx.doi.org/10.1007/s11814-018-0142-5

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test  

Hwang, Byung Chan (Department of Chemical Engineering, Sunchon National University)
Oh, So Hyeong (Department of Chemical Engineering, Sunchon National University)
Lee, Moo Seok (Kolong Research Institute)
Lee, Dong Hoon (Kolong Research Institute)
Park, Kwon Pil (Department of Chemical Engineering, Sunchon National University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2290-2295 More about this Journal
Abstract
An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and $90^{\circ}C$). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.
Keywords
PEMFC; Membrane; Degradation; Hydrogen Crossover; Linear Sweep Voltammetry; Accelerated Stress Test; Cross Linking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Ludvigsson, J. Lindgren and J. Tegenfeldt, Electrochim. Acta, 45(14), 2267 (2000).   DOI
2 F. D. Cons, ECS Trans., 16(2), 235 (2008).
3 M. Danilczuk, F. D. Cons and S. Schlick, J. Phys. Chem., B, 113, 8031 (2009).   DOI
4 E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto, Electrochem., Solid-State Lett., 7, 145 (2004).   DOI
5 N. Ohguri, A. Y. Nosaka and Y. Nosaka, J. Power Sources, 195, 4647 (2010).   DOI
6 W. Liu and D. Zuckerbrod, J. Electrochem. Soc., 152, A1165 (2005).   DOI
7 S. Kundu, M. W. Fowler, L. C. Simon, R. Abouatallah and N. Beydokhti, J. Power Sources, 183, 619 (2008).   DOI
8 L. Zhang and S. Mukerjee, J. Electrochem. Soc., 153, A1062 (2006).   DOI
9 Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun and Q. Xin, J. Membr. Sci., 233, 39 (2004).   DOI
10 S. R. Samms, S. Wasmus and R. F. Savinell, J. Electrochem. Soc., 143(5), 1498 (1996).   DOI
11 S. H. Almeida and Y. Kawano, J. Therm. Anal. Calorim., 58, 569 (1999).   DOI
12 H. J. Lee, M. K. Cho and Y. Y. Jo, Polym. Degrad. Stab., 97, 1010 (2012).   DOI
13 Q. Deng, C. A. Wilkie, R. B. Moore and K. A. Mauritz, J. Appl. Polym. Sci., 68, 747 (1998).   DOI
14 D. P. Wilkinson and J. St-Pierre, Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, Wiley, Chichester, England, 611 (2003).
15 M. L. Perry and T. F. Fuller, J. Electrochem. Soc., 149(7), S59 (2002).   DOI
16 J. Kurtz, H. Dinh, G. Saur and C. Ainscough, DOE 2017 Annual Merit Review, Washington, DC, June 8 (2017).
17 M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery and J. M. Fenton, Chem. Rev., 112, 6075 (2012).   DOI
18 S. D. Knights, K. M. Colbow, J. St-Pierre and D. P. Wilkinson, J. Power Sources, 127, 127 (2004).   DOI
19 Z. Luo, D. Li, H. Tang, M. Pan and R. Ruan, Int. J. Hydrogen Energy, 31, 1838 (2006).   DOI
20 A. Pozio, R. F. Silva, M. D. Francesco and L. Giorgi, Electrochim. Acta, 48, 1543 (2003).   DOI
21 S. Chen, H. A. Gasteiger, K. Hayakawa, T. Tada and Y. Shao-Horn, J. Electrochem. Soc., 157, A82 (2010).   DOI
22 D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman and M. E. Tisack, J. Power Sources, 131, 41 (2004).   DOI
23 A. Collier, H. Wang, X. Yaun, J. Zhang and D. P. Wilison, Int. J. Hydrogen Energy, 31, 1838 (2006).   DOI
24 J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo and M. Brundage, Fuel Cells, 5(2), 302 (2005).   DOI
25 DOE Fuel Cell Technologies Office, 2016 Multi-Year Research, Development and Demonstration Plan, Protocols for Testing PEM Fuel Cells and Fuel Cell Components, Page 3.4-46 (2016).
26 H. Wang, M. Tang and D. Pan, Int. J. Hydrogen Energy, 33(9), 2283 (2008).   DOI
27 T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi and A. Takaka, J. Power Sources, 158(2), 1222 (2006).   DOI
28 B. P. Pearman, N. Mohajeri, D. K. Slattery, M. D. Hampton, S. Seal and D. A. Cullen, Polym. Degrad. Stab., 98(9), 1766 (2013).   DOI
29 J. Hao, Y. Jiang, X. Gao, F. Xie, Z. Shao and B. Yi, J. Membr. Sci., 522(15), 23 (2017).   DOI
30 H. Zhu, S. Pei, J. Tang, H. Li, L. Wang, W. Yuan and Y. Zhang, J. Membr. Sci., 432, 66 (2013).   DOI
31 J. J. Jeong, J. H. Jeong, S. H. Kim, B. K. Ahn, J. J. Ko and K. P. Park, Korean Chem. Eng. Res., 52(4), 425 (2014).   DOI
32 Z. Chang, H. Yan, J. Tian, H. Pan and H. Pu, Polym. Degrad. Stab., 138, 98 (2017).   DOI
33 W. Liu, K. Ruth and G. Rusch, J. New Mater. Mater. Electrochem. Syst., 4, 227 (2001).
34 B. Kieitz, J. Kolde, S. Priester, C. Baczkwski and M. Crum, ECS Trans., 41(1), 1521 (2011).
35 J. Qiao, M. Saito, K. Hayamizu and T. Okada, J. Electrochem. Soc., 153(6), A967 (2006).   DOI
36 E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto, Electrochem., Solid-State Lett., 7(7), A209 (2004).   DOI
37 J. H. Song, S. H. Kim, B. K. Ahn, J. J. Ko and K. P. Park, Korean Chem. Eng. Res., 51(1), 68 (2013).   DOI