• Title/Summary/Keyword: streptomyces

Search Result 1,268, Processing Time 0.02 seconds

Biosynthesis of 3-Hydroxy-5-Methyl-O-Methyltyrosine in the Saframycin/Safracin Biosynthetic Pathway

  • Fu, Cheng-Yu;Tang, Man-Cheng;Peng, Chao;Li, Lei;He, Yan-Ling;Liu, Wen;Tang, Gong-Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.439-446
    • /
    • 2009
  • The biosynthesis study of antibiotics saframycin (SFM) in Streptomyces lavendulae and safracin (SAC) in Pseudomonas fluorescens demonstrated that 3-hydroxy-S-methyl-O-methyltyrosine (3hSmOmTyr), a nonproteinogenic amino acid, is the precursor of the tetrahydroisoquinoline molecular core. In the biosynthetic gene cluster of SAC/SFM, sacD/sfmD encodes a protein with high homology to each other but no sequence similarity to other known enzymes; sacF/sfmM2 and sacG/sfmM3 encode methyltransferases for C-methylation and O-methylation; and sacE/sfinF encodes a small protein with significant sequence similarity to the MbtH-like proteins, which are frequently found in the biosynthetic pathways of non ribosomal peptide antibiotics and siderophores. To address their function, the biosynthetic cassette of 3h5mOmTyr was heterologously expressed in S. coelicolor and P. putida, and an in-frame deletion and complementation in trans were carried out. The results revealed that (i) SfmD catalyzes the hydroxylation of aromatic rings; (ii) sacD/sacF/sacG in the SAC gene cluster and sfmD/sfmM2/sfmM3 in the SFM cluster are sufficient for the biosynthesis of 3h5mOmTyr; and (iii) the mbtH-like gene is not required for the biosynthesis of the 3h5mOmTyr precursor.

Kitasatospora sp. MJM383 Strain Producing Two Antitumor Agents, Streptonigrin and Oxopropaline G

  • JIN YING-YU;YOON TAE-MI;KIM WON-KON;KIM KYOUNG-ROK;SONG JEA-KYOUNG;KIM JONG-GWAN;LIU JING;YANG YOUNG-YELL;KWON HYUNG-JIN;SUH JOO-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1140-1145
    • /
    • 2005
  • MJM383, a rare actinomycete sp. strain originated from Chinese soils, was isolated through an antimicrobial screening system. The analysis of 16S rDNA sequences and biochemical characterization determined the strain to belong to genus Kitasatospora. Both NMR and ESI mass data of its purified bioactive compounds revealed Kitasatospora sp. MJM383 to produce two antitumor agents, streptonigrin and oxopropaline G, which have been known to be produced from Streptomyces species. This is the first report to demonstrate the presence of antitumor agents produced by genus Kitasatospora.

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.

Novel Function of Cytokinin: A Signaling Molecule for Promotion of Antibiotic Production in Streptomycetes

  • Yang Young-Yell;Zhao Xin-Qing;Jin Ying-Yu;Huh Jung-Hyun;Cheng Jin-Hua;Singh Deepak;Kwon Hyung-Jin;Suh Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.896-900
    • /
    • 2006
  • Cytokinin has been known to act as a plant hormone to promote cell division and function in diverse processes in plant growth and development. Besides being produced in plants, it is also produced by various bacteria and fungi; however, its ecological significance is still unclear. In this report, we present an interesting finding that transzeatin riboside (tZR), a naturally occurring cytokinin compound, increased antibiotic production in many different streptomycetes, including Streptomyces coelicolor Ml3O, S. pristinaespiralis ATCC 25486, S. violaceoruber Tu22, S. anfibioticus ATCC l1891, and S. griseus IFO 13350. In vitro plate assays showed that the addition of 100 $\mu$M tZR increased the growth inhibition of Pseudomonas syringae pv. syringae, a plant pathogen, by S. griseus, a streptomycin producer. We suggest that cytokinin could act as a signaling molecule for antibiotic production in streptomycetes, a group of rhizosphere bacteria.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Genus Diversity of Actinomycetes Isolated from the Sediments in Lake Daechung (대청호 퇴적층으로부터 분리된 방선균의 속 다양성)

  • Park, Dong-Jin;Yuk, Youn-Su;Park, Hae-Ryong;Piao, Zhe;Lee, Sang-Hwa;Kim, Chang-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.273-277
    • /
    • 1999
  • From each sediments collected at Chudong(static) and Hoenam(streaming) site of Lake Daechung on May 18(before rainy season) and on August 24 in 1998(after rainy season), different strains of Actinomycetes were isolated and identified to genus level. For comparison, the genus diversity of Actinomycetes in control soils such as grass land around lake, lake shore, and shallow(5-10cm) lake was also investigated. In consequence, the isolation of Streptomyces from the sediments of Lake Daechung was the most copious(41 strains) at the streaming site before rainy season and the least(27 strains) at the static site before rainy season, which were 2.4- and 1.6-fold larger than the average(17 strains) of control soils, respectively. In addition, the isolation of rare Actinomycetes from the sediments of Lake Daechung was the most copious(23 strains) at the streaming site before rainy season and the least(12 strains) at the static site after rainy season, which were 3.2-and 1.6-fold larger than the average(17 strain) of controls, respectively. Therefore, it is considered that lake sediments exhibit higher diversity of Streptomycete as well as rare Actinomycetes than general soils, and thereby can be utilized as useful sources to isolate diverse Actinomycetes.

  • PDF

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

Studies on antibiotics resistance gene in Staphylococcus aureun Plasmid: Cloning of chloramphenicol resistance determinant (Staphylococcus aureus에서 분리된 plasmid상의 항생물질 저항성 인자에 관한 연구 : Chloramphenicol 저항성 인자의 클로닝)

  • 권동현;김영선;변우현
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.341-351
    • /
    • 1986
  • R-plasmid(pSBK203, 2.5Mdal) conferring chloramphenicol resistance was isolated from mutiple antibiotic resistant Staphylococcus aureus D-H-1. Bacillus subtilis BD170 was transformed by this plasmid and restriction enzyme clevage sites of this plasmid were mapped for the cloning of chloramphenicol resistance gene. Taq I partial digested fragment of pSBK203(1.3kb) inserted into Cla I site of pBD9 appears to have both regulatory region for induction and structural gene for chloramphenicol resistance whereas Rsa I fragment (1.3kb, both ends are staggered away 0.1Kb from those of Taq I fragment) inserted into Sca I site of pBR322 showed constitutive expression in E. coli. Hinf I, Taq I, and Bgl II restriction enzyme recognition sites are found in both Rsa I fragment and Taq I fragment. Among these, Bgl II recognition site was associated with chloramphenicol resistance.

  • PDF

Effects of Culture Condition on Solubilization of Coal by Microorganisms (배양 조건의 변화가 미생물에 의한 석탄의 액화에 미치는 영향)

  • 이현호;신현재양지원
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.462-469
    • /
    • 1996
  • Biosolubilization of an Australian lignite was investigated by using Streptomyces viridosporus and Poria cocos. In order to solubilize coals effectively they were pretreated by nitric acid both in surface and liquid cultures. The optimum growth pH was 7.5 for S. viridosporus and 4.5 for P. cocos. The effects of various carbon, nitrogen and metal sources on overall solubilization were also studied. Solubility increased with the addition of urea for S. viridosporus, and peptone and tryptone for P. cocos. However carbon and metal sources had little or negative effects on solubilization. Maximum amount of coal solubilized was 85%(w/w) in a batch fermentation culture. Extracellular materials produced by micro-organism were found to be responsible for the coal solubilization. Approximately 70 to 80% of coal solubilization was determined to be the result of non-enzymatic reactions, and the rest to be the result of enzymatic reactions. Characteristics of the solubilized coal were compared with those of original coal and pretreated coal by the approximate and ultimate composition analysis, and IR-spectrum analysis. The spectroscopic results showed that the mechanism of coal solubilization was caused by continuous oxidation.

  • PDF

Antibiotics from Mushrooms (버섯의 항생물질(抗生物質))

  • Hwang, Byung-Ho
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.83-100
    • /
    • 2006
  • Antibiotics which produced by mushrooms discovered for last 40 years were described. Any antibiotic has not been used as infectious disease remudy but will be used as physiological active substance in near future. The antibiotic of mushrooms have not been published much in papers and do not have various finds of structures, compared to those of Streptomyces. Triple bond having compounds, terpenoid compounds aromatic compounds and some other compound have been known. These compounds are not dissolved well in water and mainly fat-soluble, except for cordycepin. Also, they are generally neutral, and some of them are acidic and almost none of them are basic compounds. However, acetylene and terpenoid compounds are the characteristic compounds of mushroom, and are not found in other microorganisms and plants. Especially, there are various terpenoid compounds in mushrooms. These metabolites of mushrooms were not used as antibiotic, but are interested as physiological active substance, such as enzyme inhibitor and immunomodulator. To promote studying on the antibiotics of mushroom, new screening methods must be developed, because strain belonged to the different genus produces different antibiotics, even though mushrooms belonged to the same genus and species. It is also known that mushrooms collected in different areas produce different antibiotics. Now, it is difficult to separate each pure compound from mushroom. It is important to find mushrooms which is impossible to cultivate artificially, or grow in the back land where is difficult to collect. Thousands of mushrooms grow on earth now, so that which species will be screened if not known. The biochemical and mycological study for usability of the metabolites of mushrooms is thought, as one of the important research areas, must be performed.

  • PDF