• Title/Summary/Keyword: strengths of materials

Search Result 946, Processing Time 0.031 seconds

Evaluation of mechanical properties of welding materials by an instrumented indentation test (계장화 압입시험에 의한 용접부의 물성 평가)

  • Koo, Byung-Chun;Kwon, Dong-Il;Choi, Yeol
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.117-119
    • /
    • 2003
  • When material properties depend much on positions in a material or it is difficult to make test specimens from a material or component, an instrumented indentation test described in ISO 14577-1, 14577-2 or KS B 0950 can be used to measure material properties and damage. In this study, first of all, the principals of the instrumented indentation test, KS B 0950 are introduced and yield strengths, tensile strengths and work hardening exponents of base materials, heat affected zones and weld materials are measured. In addition, the influence of post-weld heat treatment on the material properties are investigated.

  • PDF

Pullout Test of Retrofit Anchors using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yon-Gon
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.201-210
    • /
    • 1999
  • An experimental study was carried out to determine pullout behavior of a new type of anchor bolt that used deformed reinforcement and a commercial adhesive. Concrete slabs and columns with about 20-MPa compressive strength were used for 136 pullout tests performed. Test variables included anchor diameter (10 mm ~ 32 mm). embedment depth (10$\Phi$ or 15$\Phi$), edge effect. and Presence of transverse reinforcement in existing concrete. In Tyre-S test. where the edge or reinforcing steel effect was not included, the anchor Pullout strengths increased with increasing anchor diameters. Anchors with 15$\Phi$ embedment depth had higher Pullout strengths than those with 100 embedment depth The largest average Pullout load of 208 kN was determined for anchors made with D25 reinforcement and with 15$\Phi$ embedment depth. In Type-E tests, where the anchors were installed close to the edge of existing concrete, there were reductions in pullout strengths when compared to those determined in Type-S tests. In Type-ER tests, influence of the reinforcement in existing concrete on the anchor pullout strengths was examined using reinforced concrete and plain concrete columns Test results indicated that existing transverse reinforcement (column ties) did not help increase the pullout strength. The overall pullout test results revealed that the new anchor bolt can develop large pullout strengths while the anchors can be made of materials that are readily available in the market.

  • PDF

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

A Study for Bond Strengths of Acrylic and Silicone Based Soft Lining Materials (애크릴릭 및 실리콘 계열 연성 의치상 이장재의 결합력에 관한 연구)

  • Nam, Eun-Joo;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • One of the methods to improve the softness and comfortness of denture base is the use of soft denture liners. In this study, specimens were made by 2 kinds of acrylic based soft lining materials and 2 kinds of silicone based soft lining materials, and bonded to acrylic resin(Lucitone $199^{(R)}$). Then they were tested the differences of tensile bond strengths according to the materials, thickness, surface treatment and failure mode. 1. Tensile bond strength according to soft lining materials was increased in order of Coe-$soft^{(R)}$, $Mollosil^{(R)}$, $Trusoft^{(R)}$, Ufi-Gel $C^{(R)}$. The differences between groups were statistically significant at level of 0.05. 2. Tensile bond strength according to thickness of soft lining materials was increased in order of 3mm, 2mm, 1mm. The differences between groups were not statistically significant. 3. Tensile bond strength of treated surface showed higher bond strength than nontreated surface. The difference between groups was not statistically significant. 4. The failure mode of Coe-$soft^{(R)}$, $Trusoft^{(R)}$, $Mollosil^{(R)}$ were mainly cohesive failure, and that of Ufi-Gel $C^{(R)}$ were mainly adhesive failure.

  • PDF

Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites (다공성 복합재의 파손 강도 예측을 위한 미시역학 전산 해석)

  • Yang, Dae Gyu;Shin, Eui Sup
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2016
  • Porosity in polymer matrix composites increases rapidly during thermochemical decomposition at high temperatures. The generation of pores reduces elastic moduli and failure strengths of composite materials, and gas pressures in internal pores influence thermomechanical behaviors. In this paper, micromechanical finite element analysis is carried out by using two-dimensional representative volume elements for unidirectionally fiber-reinforced composites with porous matrix. According to the state of the pores, effective elastic moduli, poroelastic parameters and failure strengths of the overall composites are investigated in detail. In particular, it is confirmed that the failure strengths in the transvers and through-thickness directions are predicted much more weakly than the strength of nonpored matrix, and decrease consistently as the porosity of matrix increases.

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF

Strength characteristics of transversely isotropic rock materials

  • Yang, Xue-Qiang;Zhang, Li-Juan;Ji, Xiao-Ming
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.71-86
    • /
    • 2013
  • For rock materials, a transversely isotropic failure criterion established through the extended Lade-Duncan failure criterion incorporating an anisotropic state scalar parameter, which is a joint invariant of deviatoric microstructure fabric tensor and normalized deviatoric stress tensor, is verified with the results of triaxial compressive data on Tournemire shale. For torsional shear mode with $0{\leq}b{\leq}0.75$, rock shear strengths decrease with ${\alpha}$ increasing until the rock shear strength approaches minimum value at ${\alpha}{\approx}40^{\circ}$, and after this point, the rock shear strengths increase as ${\alpha}$ increases further. For the torsional shear mode with b > 0.75, rock shear strengths are almost constant for ${\alpha}{\leq}40^{\circ}$, but it increases with increase in ${\alpha}$ afterwards. The rock shear strength variation against ${\alpha}$ agrees with shear strength changing tendency of heavily OCR natural London Clays tested before. Prediction results show that the transversely isotropic failure criterion proposed in the paper is reasonable.

Flexural properties of a light-cure and a self-cure denture base materials compared to conventional alternatives

  • Mumcu, Emre;Cilingir, Altug;Gencel, Burc;Sulun, Tonguc
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.136-139
    • /
    • 2011
  • PURPOSE. A new light curing urethane dimethacrylate and a cold curing resin with simpler and faster laboratory procedures may have even improved flexural properties. This study investigated the 3-point flexural strengths and flexural moduli of two alternate base materials. MATERIALS AND METHODS. A cold curing resin (Weropress) and a light curing urethane dimethacrylate base material (Eclipse). Along with Eclipse and Weropress, a high impact resin (Lucitone199) and three conventional base materials (QC 20, Meliodent and Paladent 20) were tested. A 3-point bending test was used to determine the flexural strengths and flexural moduli. The mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations for each group were analyzed by means of one-way analysis of variance (ANOVA) (with mean difference significant at the 0.05 level). Post hoc analyses (Scheffe test) were carried out to determine the differences between the groups at a confidence level of 95%. RESULTS. Flexural strength, displacement and force maximum load values of Eclipse were significantly different from other base materials. Displacement values of QC 20 were significantly different from Lucitone 199 and Weropress. CONCLUSION. The flexural properties and simpler processing technique of Eclipse system presents an advantageous alternative to conventional base resins and Weropress offers another simple laboratory technique.

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel (오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Cho, Yun;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

COMPARISON OF MECHANICAL PROPERTIES OF VARIOUS POST AND CORE MATERIALS

  • Ahn Seung-Geun;Sorensen John A.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.288-299
    • /
    • 2003
  • Statement of problem: Many kinds of post and core systems are in the market, but there are no clear selection criteria for them. Purpose: The purpose of this study was to compare the flexural strength and modulus of elasticity of core materials, and measure the bending strength of post systems made of a variety of materials. Material and Methods: The flexural strength and elastic modulus of thirteen kinds core buildup materials were measured on beams of specimens of $2.0{\times}2.0{\times}24{\pm}0.1mm$. Ten specimens per group were fabricated and loaded on an lnstron testing machine at a crosshead speed of 0.25mm/min. A test span of 20 mm was used. The failure loads were recorded and flexural strength calculated with the measured dimensions. The elastic modulus was calculated from the slopes of the linear portions of the stress-stram graphs. Also nine kinds commercially available prefabricated posts made of various materials with similar nominal diameters, approximately 1.25mm, were loaded in a three-point bend test until plastic deformation or failure occurred. Ten posts per group were tested and the obtained data were anaylzed with analysis of variance and compared with the Tukey multiple comparison tests. Results: Clearfil Photo Core and Luxacore had flexural strengths approaching amalgam, but its modulus of elasticity was only about 15% of that of amalgam. The strengths of the glass ionomer and resin modified glass ionomer were very low. The heat pressed glass ceramic core had a high elastic modulus but a relatively low flexural strength approximating that of the lower strength composite resin core materials. The stainless steel, zirconia and carbon fiber post exhibited high bending strengths. The glass fiber posts displayed strengths that were approximately half of the higher strength posts. Conclusion: When moderate amounts of coronal tooth structure are to be replaced by a post and core on an anterior tooth, a prefabricated post and high strength, high elastic modulus core may be suitable. CLINICAL IMPLICATIONS In this study several newly introduced post and core systems demonstrated satisfactory physical properties. However when the higher stress situation exists with only a minimal ferrule extension remaining a cast post and core or zirconia post and pressed core are desirable.