Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.6.325

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel  

Lee, Sang-In (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Cho, Yun (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.6, 2016 , pp. 325-331 More about this Journal
Abstract
This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.
Keywords
austenitic; high-manganese steel; grain size; tensile properties; deformation-induced martensite transformation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim and Y. W. Chang, Met. Mater. Int., 20, 27 (2014).   DOI
2 J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um and Y. W. Chang, Met. Mater. Int., 20, 41 (2014).   DOI
3 D. Jeong, T. Park, J. Lee and S. Kim, Met. Mater. Int., 21, 453 (2015).   DOI
4 M. Jo, Y. M. Koo and S. K. Kwon, Met. Mater. Int., 21, 227 (2015).   DOI
5 K. M. Rahman, V. A. Vorontsov and D. Dye, Acta Mater., 89, 247 (2015).   DOI
6 M. Koyama, T. Lee, C. S. Lee and K. Tsuzaki, Mater. Des., 49, 234 (2013).   DOI
7 I. Gutierrez-Urrutia and D. Raabe, Scr. Mater., 66, 992 (2012).   DOI
8 D. B. Santos, A. A. Saleh, A. A. Gazder, A. Carman, D. M. Duarte,E. A. Ribeiro, B. M. Gonzalez and E. V. Pereloma, Mater. Sci. Eng., A, 528, 3545 (2011).   DOI
9 O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier, Curr. Opin. Solid State Mater. Sci., 15, 141 (2011).   DOI
10 S. Y. Jo, J. Han, J. H. Kang, S. Kang, S. Lee and Y. K. Lee, J. Alloys Compd., 627, 374 (2015).   DOI
11 G. Dini, R. Ueji and A. Najafizadeh, Mater. Sci. Forum, 654, 294 (2010).
12 I. Gutierrez-Urrutia, S. Zaefferer and D. Raabe, Mater. Sci. Eng., A, 527, 3552 (2010).   DOI
13 R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura and K. Kunishige, Scr. Mater., 59, 963 (2008).   DOI
14 S. Kang, J. G. Jung, M. Kang, W. Woo and Y. K. Lee, Mater. Sci. Eng., A, 652, 212 (2016).   DOI
15 G. Dini, A. Najafizadeh, S. M. Monir-Vaghefi and R. Ueji, J. Mater. Sci. Technol., 26, 181 (2010).   DOI
16 J. G. Sevillano, Scr. Mater., 59, 135 (2008).   DOI
17 M. A. Meyers, O. Vöhringer and V. A. Lubarda, Acta Mater., 49, 4025 (2001).   DOI
18 E. El-Danaf, S. R. Kalidindi and R. D. Doherty, Metall. Mater. Trans. A, 30, 1223 (1999).   DOI
19 H. Nakatsu, T. Miyata and S. Takaki, J. Jpn. Inst. Met., 60, 928 (1996).   DOI
20 G. B. Olson and M. Cohen, Metall. Trans. A, 7A, 1897 (1976).
21 Y. K. Lee and C. S. Choi, Metall. Mater. Trans. A, 31A, 355 (2000).
22 L. Li and T. Y. Hsu, Calphad, 21, 443 (1997).   DOI
23 S. Curtze, V. T. Kuokkala, A. Oikari, J. Talonen and H. Hanninen, Acta Mater., 59, 1068 (2011).   DOI
24 S. Allain, J. P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Mater. Sci. Eng. A, 387, 158 (2004).
25 K. Ishida and T. Nishizawa, Trans. Jpn. Inst. Metall., 15, 225 (1974).   DOI
26 P. J. Ferreira and P. Mullner, Acta Mater., 46, 4479 (1998).   DOI
27 A. T. Dinsdale, Calphad, 15, 317 (1991).   DOI
28 A. Dumay, J. P. Chateau, S. Allain, S. Migot and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).
29 S. Allain, Ph.D. Thesis, INPL, Nancy (2004).
30 I. A. Yakubtsov, A. Ariapour and D. D. Perovic, Acta Mater., 47, 1271 (1999).   DOI
31 P. H. Adler, G. B. Olson and W. S. Owen, Metall. Trans. A, 17A, 1725 (1986).
32 J. D. Yoo, S. W. Hwang and K. T. Park, Mater. Sci. Eng. A, 508, 234 (2009).   DOI
33 G. Dini, A. Najafizadeh, R. Ueji and S. M. Monir-Vaghefi, Mater. Des., 31, 3395 (2010).   DOI
34 X. Yuan, L. Chen, Y. Zhao, H. Di and F. Zhu, J. Mater. Process. Technol., 217, 278 (2015).   DOI
35 S. Wang, Z. Liu and G. Wang, Acta Metall. Sinica, 45, 1083 (2009).
36 S. Takaki, H. Nakatsu and Y. Tokunaga, Mater. Trans., JIM, 34, 489 (1993).   DOI
37 S. Takaki, T. Furuya and Y. Tokunaga, ISIJ Int., 30, 632 (1990).   DOI
38 M. Koyama, T. Sawaguchi and K. Tsuzaki, Metall. Mater. Trans. A, 43, 4063 (2012).   DOI