• Title/Summary/Keyword: strength ratios

Search Result 1,642, Processing Time 0.026 seconds

Study on the applicability of regression models and machine learning models for predicting concrete compressive strength

  • Sangwoo Kim;Jinsup Kim;Jaeho Shin;Youngsoon Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.583-589
    • /
    • 2024
  • Accurately predicting the strength of concrete is vital for ensuring the safety and durability of structures, thereby contributing to time and cost savings throughout the design and construction phases. The compressive strength of concrete is determined by various material factors, including the type of cement, composition ratios of concrete mixtures, curing time, and environmental conditions. While mix design establishes the proportions of each material for concrete, predicting strength before experimental measurement remains a challenging task. In this study, Abrams's law was chosen as a representative investigative approach to estimating concrete compressive strength. Abrams asserted that concrete compressive strength depends solely on the water-cement ratio and proposed a logarithmic linear relationship. However, Abrams's law is only applicable to concrete using cement as the sole binding material and may not be suitable for modern concrete mixtures. Therefore, this research aims to predict concrete compressive strength by applying various conventional regression analyses and machine learning methods. Six models were selected based on performance experiment data collected from various literature sources on different concrete mixtures. The models were assessed using Root Mean Squared Error (RMSE) and coefficient of determination (R2) to identify the optimal model.

An experimental study of AAC masonry prisms with chases under compression

  • Gregoria K. Langstang;Teiborlang Warjri;Richard B. Lyngkhoi;Comingstarful Marthong
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.375-389
    • /
    • 2024
  • Installing wiring or plumbing fixtures necessitates creating chases within masonry walls, which, while serving practical purposes, raises a crucial concern regarding the potential compromise of the masonry's structural integrity. Given these concerns, it becomes essential to thoroughly understand the impact of incorporating chases on masonry strength. In this study, 37 AAC masonry prisms (200×330×100 mm3) were cast and tested for compression. The prisms were equipped with chases of various depths -10 mm, 20 mm and 30 mm; and orientations (horizontal, inclined, and vertical), which were then filled with mortar using 1:2, 1:4, and 1:6 cement-to-sand ratios. The primary objectives were to assess the strength decrease in the prisms with different chase characteristics compared to a control specimen and to determine the percentage strength increase due to filling materials compared to unfilled chases. Key findings indicate that as chase depth increases, there is a substantial reduction in prism strength. However, the orientation of the chase does not significantly affect strength reduction. Importantly, filling the chases with mortar leads to a significant increase in prism strength. This study not only unveils the complex impact of chase characteristics on masonry strength but also emphasizes the crucial role of filling materials in strengthening these prisms.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

Development of Ultimate Strength Design Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중을 받는 유공판의 최종강도 설계식 개발)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.173-179
    • /
    • 2006
  • A number of perforated plates are utilized for the passage of the crew and the equipment, reducing weight and the arrangement of piping. Hull girders in double bottom and floor plates are the typical parts which have those plates in a ship structure, and the perforated plate is usually positioned at the place which has less loading without local strength problems. In the case of utilizing the plate inevitably at the place which has large strength, an opening of the plate has large effect on the buckling strength due to in-plane rigidity and ultimate strength. Therefore the assessments of the elastic buckling strength and the ultimate strength for the perforated plate are the essential requirements for determining the dimensions of the parts at the initial design stage. With above reason, a need of the reasonable assessments for the elastic buckling strength and the ultimate strength has evolved. The numerical series analysis with the consideration of the effect due to various aspect ratios and slenderness ratios were performed using finite element method in this research. Simple formulas for the design are also proposed from the above analysis.

An experimental study on the reduction of autogenous shrinkage of high strength concrete with bar restricted specimen (철근구속을 받는 고강도 콘크리트의 자기수축저감에 관한 실험 연구)

  • 최진영;전철송;임병호;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.431-436
    • /
    • 2002
  • In this paper, to seek a solution of reducing autogenous shrinkage three types of bar restricted concrete specimens which have similar compressive strength were tested. The three type of concrete were plain concrete-P25 type, $10^{\circ}C$ fly-ash replaced concrete-F10 type, and $1^{\circ}C$ expansion admixture replaced concrete-SP1 type, and with the test result an experimental study was conducted to gain the tensile stress of concrete. From the result of P25, SP1, F10 tests, it was found that by the age of 14 the ratios of tensile stress to tensile strength of three specimens are $75^{\circ}C$, $47^{\circ}C$, $52^{\circ}C$ respectively. so we came to a conclusion that the SP1-type concrete has better capacity to reduce autogenous shrinkage than F10-type concrete at similar compressive strength condition.

  • PDF

Influences of Water to Cement Ratio and Chemical Admixtures on the Quality of Inter-Locking Block (인터로킹 블록의 품질에 미치는 물시멘트비와 화학혼화제의 영향)

  • 이상태;김기철;신병철;김진선;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.157-160
    • /
    • 1998
  • KS F 4419, which is dealt with the Inter-Locking block, states that water to cement ratio for manufacturing inter-locking block should be less than 25% and in KS F4419, the use of admixture is shown to be reluctant to recommend. In this paper, reinvestigation of some regulations in KS F 4419 are carried out. According to the experimental results, as W/C increases, flexural strength and compressive strength are tended to decrease, whereas they increases within certain range, Flexural strength and compressive strength have higher values in 1:2(W/C=35%), 1:4(W/C=45%) and 1:6(W/C=55%) of mix proportions. Moreover they have rather higher values with the containment of high range AE water-reducing agent. The absorption ratios decrease with the increase of W/C and the containment of high range AE water-reducing agent. Therefore, the regulations on the W/C and admixture in KS F 4419 reguire revision.

  • PDF

An Experimental Research on the Feature of the Porous Concrete (다공콘크리트의 특성에 관한 실험적 연구)

  • 옥치율;김종주;옥치남
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1990
  • We experimented the physical property of the porous concrete by changing the water cement ratio, when the aggregate ratios are 1:5 and 1:7 separately. And then we received the results as follows. The bigger, the coarse grading of the porous concrete is, the more sensitive to the water cement ratio, the porous concrete becomes. And if we think over its compressive strength, the coarse aggregate which has 5-15mm width is most appropriate. So we concluded that when its compressive strength, permeability coefficient and its unit weight are $50kg/cm^{2}3cm/sec$ and $1900kg/m^{3}$ respectively, the water cement ratio which has 35-37% width is most appropriate, too. And its compressive strength and unit weight show that they are about a quarter and three quarters respectively about the conventional concrete.

  • PDF

Manufacturing and Mechanical Properties of Sisal Fiber Reinforced Hybrid Composites

  • Hui, Zhi-Peng;Sudhakara, P.;Wang, Yi-Qi;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.273-278
    • /
    • 2013
  • PLA/PP polymer blends in various ratios (PLA:PP = 9:1, 4:1, 3:1, and 1:1), and their composites (PLA:PP = 1:1) with sisal fiber (10, 15 and 20 wt%) were fabricated using MAPP as compatibilizer. The aim of the work was to reduce the cost of biodegradable composites as well as to improve the impact strength of PLA using PP, a relatively cheaper thermoplastic. The developed composites were characterized for their morphological and mechanical properties. The tensile strength and modulus of the blends were decreased with increasing PP content whereas the strain at break and impact strength are increased. The tensile strength, modulus and water absorption were increased for hybrid composites with increasing fiber content.

Evaluation of Durability and Bond Strength of Polymer Powder-Modified Mortars With Accelerators (급결제를 이용한 분말수지 혼입 폴리머 시멘트 모르타르의 부착강도 및 내구성 평가)

  • Lee Chol Woong;Mun Kyoung Ju;Song Hun;Kim Byeang Cheol;Choi Nak Woon;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.559-562
    • /
    • 2005
  • The purpose of this study is to evaluate the durability and bond strength of polymer powder-modified mortars with special accelerator components. The mortars were prepared with various polymer-binder ratios and applied to the concrete substrate as a repair material. Bond strength, flexural and compressive strengths, freeze-thaw resistance and carbonation resistance were measured for the test. As a result, bond strength of the mortars was increased with an increase in the polymer-cement ratio, and freeze-thaw resistance and carbonation resistance were significantly improved with increasing polymer-cement ratio also.

  • PDF

Performance of Latex Modified Cementitious Repair material for Concrete Structures (콘크리트 보수용 라텍스 개질 시멘트계 보수 재료의 특성)

  • Lee, Sang-Woo;Park, Sung-Ki;Sung, Sang-Kyoung;Lee, Jae-Young;Kim, Wan-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.289-292
    • /
    • 2006
  • The purpose of this study was to evaluate a performance of latex-modified repair material applied to the substrate concrete. The experimental variables were latex-cement ratios (5, 10, 15%), polymer(0.5%, 1%) and admixtures. The flow, air content, compressive strength, flexural strength were tested. Test results showed that compressive and flexural strength decreased by adding hydroxyethyl cellulose and increasing water-binder ratio. The compressive and flexural strength were increased when addition of defoamer.

  • PDF