• Title/Summary/Keyword: strength of matrix

Search Result 1,758, Processing Time 0.028 seconds

Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH ($9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성)

  • Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.

Effect of Cobalt to Bronze Ratio on Transverse Rupture Strength of Diamond Segments

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1146-1147
    • /
    • 2006
  • Diamond segments were fabricated by cold pressing and sintering under pressure at the temperature up to $750^{\circ}C$. Based on the results of this investigation, it can be concluded that the segments containing 39wt.% cobalt in the matrix material have the highest bending strength at a fracture probability of 50 % due to the weibull distribution method. According to the weibull statistics, it was also determined that the transverse rupture strength was the best for 39 wt.% cobalt ratio in the matrix material for the fracture probability when the other variables are the same.

  • PDF

Evaluation and improvement of the stabilization process of the MSW Incinerator fly ash into cement (시멘트를 이용한 소각비산회의 안정화공정에 따른 문제점과 해결방안)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • This study was initiated to evaluate and resolve the potential problems caused as the MSWI(Municipal Solid Waste Incinerator) fly ash were stabilized and solidified into the cement. The physical and chemical properties of fly ashes (K and M) used in this study were fixed according to the operating conditions of the incineration plant. The compressible strength of the solidified matrix used in this study were measured at 7, 28, and 56 curing days, respectively, to evaluate the stability of the solidified matrix, which were further analyzed by XRD and SEM. The experimental results obtained in this study showed that the relatively long hours of curing periods were needed to solidify the fly ash. The solidified matrix containing K ash had the high and excellent compressible strength of $200{\;}kg/\textrm{cm}^2$, after 56 curing days, but was not good enough in appearance. The analytical data by SEM confirmed that the alkaline Na and K, which are highly dissolved in water, were included in the fly ash and evenly distributed into the exterior surface of the solidified matrix. Whereas, the solidified matrix containing M ash never showed such a compressible strength as shown in the K ash due to the severe fracture, even as early as 7 curing days. Based on its XRD analysis, it appeared that both $C_2S$ and $C_3S$ highly related to the compressible strength were not crystallyzed into the solidified matrix. However, the compressible strength of the solidified and cemented M ash was remarkably improved by 100 times, after the alkalinity was washed out, which indicated that it is equivalent to 30 to 40g per one kg of fly ash.

  • PDF

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

Performance improvement of membrane distillation using carbon nanotubes

  • Kim, Seung-Hyun;Lee, Tae-Min
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.367-375
    • /
    • 2016
  • Although the bucky paper (BP) made from carbon nanotubes (CNTs) possesses beneficial characteristics of hydrophobic nature and high porosity for membrane distillation (MD) application, weak mechanical strength of BP has often prevented the stable operation. This study aims to fabricate the BP with high mechanical strength to improve its MD performance. The strategy was to increase the purity level of CNTs with an assumption that purer CNTs would increase the Van der Waals attraction, leading to the improvement of mechanical strength of BP. According to this study results, the purification of CNT does not necessarily enhance the mechanical strength of BP. The BP made from purer CNTs demonstrated a high flux ($142kg/m^2{\cdot}h$) even at low ${\Delta}T$ ($50^{\circ}C$ and $20^{\circ}C$) during the experiments of direct contact membrane distillation (DCMD). However, the operation was not stable because a crack quickly formed. Then, a support layer of AAO (anodic aluminum oxide) filter paper was introduced to reinforce the mechanical strength of BP. The support reinforcement was able to increase the mechanical strength, but wetting occurred. Therefore, the mixed matrix membrane (PSf-CNT) using CNTs as filler to polysulphone was fabricated. The DCMD operation with the PSf-CNT membrane was stable, although the flux was low ($6.1kg/m^2{\cdot}h$). This result suggests that the mixed matrix membrane could be more beneficial for the stable DCMD operation than the BP.

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

Evaluation of Fatigue Strength by Graphite in Ductile Cast Iron (구상흑연주철재의 흑연에 의한 피로강도의 평가)

  • 이경모;윤명진;이종형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.214-221
    • /
    • 2003
  • In this study, based on the effect of the interaction of fracture mechanics by graphite and fatigue limit phenomena of the microscopic observation various matrix structure, spheroidal ratio, size of graphite and distribution etc. parameters containd with Ductile Cast Iron. Therefore, in this study, different ferrite-pearlite matrix structure and spheroidal ratio of graphite of 70%, 80% and 90%, GCD40, GCD45-1 and GCD45-2 series and three different ferrite-pearlite matrix structure, GCD 45-3, GCD 50, GCD 60 series, all of which contain more than 90% spheroidal ratio of graphite, were used to obtain the correlation between mean size of spheroidal graphite and fatigue strength. (1) 73% pearlite structure had the highest fatigue limitation while 36% pearlite structure had the lowest fatigue limitation among ferrite-pearlite matrix. the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 10%, distribution range of fatigue life was small in same stress level. (2) (equation omitted) of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of (equation omitted) may be used as a guideline for the control of inclusion size in the steelmaking processes.

Strengthening of C/C Composites through Ceramer Matrix

  • Dhakate, S.R.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.159-163
    • /
    • 2004
  • The polymer-ceramic hybrid, known as 'ceramer', was synthesized by a sol-gel process by incorporating different amount of alkoxide as source of silicon in resorcinol-formaldehyde in presence of basic catalyst to get different percentage of silicon in ultimate carbonized composites. FTIR of the ceramer confirms that it is a network of Si-O-Si, Si-O-$CH_2$ and Si-OH type groups linked with benzene ring. Different amount of silicon in the ceramer exhibits varying temperature of thermal stability and lower coefficient of thermal expansion as compared to pure resorcinol-formaldehyde resin. The lower value of CTE in ceramer is due to existence of silica and resorcinol -formaldehyde in co-continuous phase. Unidirectional composites prepared with ceramer matrix and high-strength carbon fibers show lower value of flexural strength at polymer stage as compared to those prepared with resorcinol-formaldehyde resin. However, after heat treatment to $1450^{\circ}C$, the ceramer matrix composites show large improvement in the mechanical properties, i.e. with 7% silicon in the ceramer, the flexural strength is enhanced by 100% and flexural modulus value by 40% as compared to that of pure resorcinol-formaldehyde resin matrix composites.

  • PDF

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.