• Title/Summary/Keyword: strength of matrix

Search Result 1,756, Processing Time 0.029 seconds

Production and High Temperature Mechanical Properties of Ti-TiC Composite by Reaction Milling (반응밀링법에 의한 Ti-TiC 복합재료의 제조 및 고온 기계적 특성)

  • Jin, Sang-Bok;Choe, Cheol-Jin;Lee, Sang-Yun;Lee, Jun-Hui;Kim, Sun-Guk
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.918-924
    • /
    • 1998
  • This study has been carried out to investigate the effect of reaction milling time on the synthesis of Ti- TiC p powder synthesised from the elemental titanium and activated carbon by reaction milling(RM), and the effect of vacu­u urn hot pressing temperature and TiC volume fraction on microstructural and mechanical properties of Ti- TiC com­p posite $\infty$ns이idated by vacuum hot pressing(VHP).T The elemental powders of titanium and activated carbon can be converted into Ti- TiC composite powders by reac­t tion milling for about 300hours, and were the average grain size of the as- milled powders has been measured to be a about $5\mu\textrm{m}$. The relative density of Ti- TiC VHPed above $1000^{\circ}C$ during Ihr is about 98% and the mechanical properties o of In- situ Ti- TiC composites are improved by TiC particle dispersed uniformly on titanium matrix. In order to investi­g gate thermal stability of Ti- TiC composite, after annealing at $600^{\circ}C$ for 80hrs micro- Vickers hardness have been per­f formed, and the values have been shown little changed as compared with those before annealing. The compact has b been tested on high temperature compressive test at $700^{\circ}C$ and has showed a high temperature compressive strength of 330MPa in a Ti- 20vol% TiC.

  • PDF

An Estimation Method of Settlement and the Behaviour Characteristics of Granular Compaction Pile Reinforced with Uniformly Graded Permeable Concrete (등입도 투수성 콘크리트 보강 조립토 다짐말뚝의 거동특성 및 침하량 평가기법)

  • Kim, Jeong-Ho;Kim, Seung-Wook;Kim, Hong-Taek;Hwang, Jeong-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.73-83
    • /
    • 2006
  • The behaviour characteristics of Granular Compaction Pile (GCP) are mainly governed by the lateral confining pressure mobilized in the soft soil matrix to restrain the bulging failure of the granular compaction pile. The GCP method is most effective in soft soil with undrained shear strength ranging $15{\sim}50kPa$. However, the efficiency of this method reduces the more compressible soil conditions, which does not provide sufficient lateral confinement. In the present study, the GCP method reinforced with uniformly graded permeable concrete is suggested for the extension of application to the soft ground. Also, large triaxial compression tests are conducted on composite-reinforced soil samples for verification of availability of the suggested method and the settlement estimation method of the reinforced GCP is proposed. Furthermore, for the verification of the proposed method, predicted settlements by the proposed method are compared with results of 3-dimensional numerical analyses. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

Preparation and Characterization of PET/PVA-BA/OPP Multi-layer Films for Seasoned-laver Packaging (조미김 포장을 위한 PET/PVA-BA/OPP 다층필름 제조 및 특성분석)

  • Lim, Mijin;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • To identify applicability for packaging material of polyvinyl alcohol (PVA)/boric acid (BA) coating solution with highly-enhanced water vapor and oxygen barrier properties, the PET/PVA-BA/OPP multi-layer films were prepared through comma coating and lamination process. The oxygen and water vapor permeabilities, and tensile strength of as-prepared multi-layer films were investigated before and after pressure cooker test (PCT). Although oxygen and water vapor permeabilites, and mechanical properties of PET/PVA-BA/OPP multi-layer films was decreased after PCT, their properties were highly enhanced as increase of BA contents in PVA matrix. This is strongly related with enhanced cross-linking density in PVA-BA layer. In storage test of seasoned-laver, the PET/PVA-BA/OPP multi-layer films were comparatively effective to suppress the increase in peroxide value originating from oxidation of seasoned-laver. Comparing the commercially available PP/Al-metallized PP for seasoned-laver packaging, however, PET/PVA-BA/OPP multi-layer films did not show any advantage in water activity. This is due to higher water vapor permeation properties of as-prepared multi-layer films. Therefore, further studies are required to enhance the water vapor permeation in PET/PVA-BA/OPP multi-layer films.

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Research on the Development of Automated Multifunction-Integrated Motion Bed (자동화된 다기능 통합 전동 침대 개발에 대한 연구)

  • Lee, Youngdae;Choi, Moonsoo;Jang, Ilhwan;Kim, Chang-Young;Choi, Dong-Soo;Kim, Minsung;Kim, Wonjoon;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.215-222
    • /
    • 2018
  • Recently, various motion beds have been actively developed and popularized. The motion bed has the functions of height adjustment, back plate rising, knee lifting, tilt function and left / right rotation, and the remote control can conveniently be used by the patient himself or the caregiver to move the patient. However, since the medical bed for use does not have a function of preventing pressure ulcers, exchanging sheets, and transferring patients, it is necessary to disperse body pressure by using a pressure ulcer prevention matrix to prevent pressure ulcers. However, it is accompanied by muscle strength and hard work, and nurses are avoiding difficult nursing care. In this study, we developed the first prototype in the world and confirmed that the system works normally with the goal of developing multifunctional beds that automatically perform the prevention of bed sores, the exchange of sheets and the transfer of patients in order to facilitate such nursing work. It is anticipated that the proposed multifunctional motorized bed in the future will be a model of a medical robot for smart healthcare.

Preparation and characteristics of $HfO_2$ and $CeO_2$ doped 3Y-TZP block for dental ceramic block ($HfO_2$$CeO_2$가 첨가된 3Y-TZP 치과용 블록의 제조 및 특성 평가)

  • Ji, Sang-Yong;Ji, Hyung-Bin;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.311-317
    • /
    • 2009
  • 3Y-TZP block doped with $HfO_2$ and $CeO_2$ for dental ceramic block to the proliferation of CAD/CAM systems was prepared by heating at $800{\sim}1100^{\circ}C$ and then sintering at $1450^{\circ}C$. The influences of heating temperature and addition of $HfO_2$ and $CeO_2$ on the mechanical and chemical properties of 3Y-TZP block were investigated. Using the EDS mapping images, $HfO_2$ and $CeO_2$ was well dispersed in the 3Y-TZP matrix. 3 wt% $HfO_2$ doped block showed the optimum biaxial strength (1 GPa), while 3 wt% $CeO_2$ doped block enhanced the stability of $t-ZrO_2$ under hydrothermal atmosphere.

Groundwater Flow Model for the Pollutant Transport in Subsurface Porous Media Theory and Modeling (지하다공질(地下多孔質) 매체(媒體)속에서의 오염물질이동(汚染物質移動) 해석(解析)을 위한 지하수(地下水)흐름 모형(模型))

  • Cho, Won Cheal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.97-106
    • /
    • 1989
  • This paper is on the modeling of two-dimensional groundwater flow, which is the first step of the development of Dynamic System Model for groundwater flow and pollutant transport in subsurface porous media. The particular features of the model are its versatility and flexibility to deal with as many real-world problems as possible. Points as well as distributed sources/sinks are included to represent recharges/pumping and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Sources/sinks strength over each element and node, hydraulic head at each Dirichlet boundary node and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution methed for the matrix equation approximating the partial differential equation of groundwater flow. The model also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. The groundwater flow model shall be combined with the model of pollutant transport in subsurface porous media. Then the combined model, with the applications of the Eigenvalue technique and the Dynamic system theory, shall be improved to the Dynamic System Model which can simulate the real groundwater flow and the pollutant transport accurately and effectively for the analyses and predictions.

  • PDF

Effect on Graphene Addition on Characteristics of Polypropylene Biocomposites Reinforced with Sulfuric Acid Treated Green Algae (황산처리된 녹조류 보강 폴리프로필렌 바이오복합재료에 대한 그래핀 첨가영향)

  • Jang, Young Hun;Han, Seong Ok;Kim, Hyung-Il;Sim, I Na
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.518-525
    • /
    • 2013
  • To improve the mechanical properties of polypropylene (PP) biocomposites reinforced with sulfuric acidtreated green algae (SGA), SGA/graphite nanoplatelets (GNP)/PP biocomposites were prepared and their properties were evaluated depending on the particle size and content of GNP. The flexural and impact strength of SGA/GNP/PP biocomposites decreased with the addition of GNP, whereas the flexrual and storage moduli were greatly improved with increasing GNP loading. SGA/GNP/PP biocomposites reinforced with GNP5 showed generally better mechanical properties compared to that reinforced with GNP15 mainly due to the improved dispersion of the smaller GNP. SGA/GNP/PP biocomposites reinforced with GNP5 showed a lower resistance to the thermal expansion because the relatively uniform dispersion of smaller GNP was responsible for the effective heat transfer to the polymer matrix. As a result, SGA/GNP/PP biocomposite was acceptable for the general purpose application due to the improved flexural resistance, storage moduli, and damping characteristics.

Curing Behavior and Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites by Electrical Resistivity Measurement under Tensile/Compressive Tests (전기증착된 탄소섬유/에폭시 복합재료의 인장/압축 하중하에서의 전기저항 측정법을 이용한 경화 및 계면특성)

  • Park, Joung-Man;Lee, Sang-Il;Kim, Jin-Won
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • Curing behavior and interfacial properties were evaluated using electrical resistance measurement and tensile/compressive fragmentation test. Electrical resistivity difference (${\Delta}R$) during curing process was not observed in a bare carbon fiber. On the other hand, ${\Delta}R$ appeared due to the matrix contraction in single-carbon fiber/epoxy composite. Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred under tensile loading, whereas that of the ED composite reached relatively broadly up to the infinity. Comparing to the untreated case, interfacial shear strength (IFSS) of the ED treated composite increased significantly in both tensile fragmentation and compressive Broutman test. Microfailure modes of the untreated and the ED treated fiber composite showed the debonding and the cone shapes in tensile test, respectively. For compressive test, fractures of diagonal slippage were observed in both untreated and the ED treated composite. Sharp-end shape fractures exhibited in the untreated composite, whereas relatively dull fractures showed in the ED Heated composite. It is proved that ED treatments affected differently on the interfacial adhesion and microfailure mechanism under tensile/compressive tests.

  • PDF