DOI QR코드

DOI QR Code

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber

다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구

  • Song, Jong Seob (Chungnam National University, Department of Materials Science & Engineering) ;
  • Kim, Seyoung (Korea Institute of Energy Research, Energy Material Research Lab.) ;
  • Baik, Kyeong Ho (Chungnam National University, Department of Materials Science & Engineering) ;
  • Woo, Sangkuk (Korea Institute of Energy Research, Energy Material Research Lab.) ;
  • Kim, Soo-hyun (Korea Institute of Energy Research, Energy Material Research Lab.)
  • Received : 2017.03.31
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

섬유강화 세라믹 복합재료 제조 방법 중 실리콘 용융 침투 공정법(Liquid Silicon Infiltration-LSI)은 낮은 제조단가 및 짧은 공정 시간 등의 장점을 가진다. 본 연구에서는 고온 내산 특성이 우수한 SiC 섬유를 LSI 공정에 적용하기 위해 결정화도와 산소함량이 다른 세 가지 SiC 섬유(Tyranno SA, LoxM, Tyranno S)를 이용하여 $SiC_f/SiC$ 복합재료를 제작하고 그 적용 가능성을 확인하였다. LSI 공정을 통해 제조된 $SiC_f/SiC$ 복합재료는 모두 2% 미만의 기공률로 치밀화 되었지만, 섬유의 결정화도와 산소함량에 따라 3점 굽힘강도는 큰 차이를 나타냈다. 이는 $1450^{\circ}C$ 이상의 높은 LSI 공정 온도에 SiC 섬유가 노출 될 경우 비정질 SiOC상이 결정화되며 수축하는 현상과 섬유 내 잔존 산소-모재 내 탄소의 반응으로 인한 미세구조 차이에 기인하는 것으로 판단된다. 이는 SEM, XRD 및 TEM 분석을 통해 섬유 종류별 공정온도에서의 특성 변화로 확인하였다.

Keywords

References

  1. Ishikawa, T., "Advances in Inorganic Fibers", Advances in Polymer Science, Vol. 178, 2005, pp. 109-144.
  2. Schmalzried, C., and Schwetz, A., "Ceramics Science and Technology", Volume 2: Materials and Properties; Chapter 4, Ed. by R. Riedel and I.W. Chen Wiley VCH, Weinheim, 2010, pp. 131-227.
  3. Takeda, M., Saeki, A., Sakamoto, J., Imai, Y., and Ichikawa, H., "Properties of Polycarbosilane Derived Silicon Carbide Fibers with Various C/Si Compositions", Composites Science and Technology, Vol. 59, 1999, pp. 787-792. https://doi.org/10.1016/S0266-3538(99)00009-3
  4. Takeda, M., Sakamoto, J., Imai, Y., Ichikawa, H., and Ishikawa, T., 18th Annual Conference on Composites and Advanced Ceramic Materials A: Ceramic Engineering and Science Proceedings, Vol. 15, 2008, p. 133.
  5. Schawaller, D., Clauss, B., and Buchmeiser, M.R., "Ceramic Filament Fibers - A Review", Macromolecular Materials and Engineering, Vol. 297, No. 6, 2012, pp. 502-22. https://doi.org/10.1002/mame.201100364
  6. Ishikawa, T., Kohtoku, Y., Kumagawa, K., Yamamura, T., and Nagasawa, T., "High Strength Alkali Resistant Sintered SiC Fiber Stable to $2,200^{\circ}C$", Nature Vol. 391, 1998, pp. 773-775. https://doi.org/10.1038/35820
  7. Yamamura, T., Ishikawa, T., Shibuya, M., Hisayuki, T., and Okamura, K., "Development of a New Continuous Si-Ti-C-O Fibre Using an Organometallic Polymer Precursor", Journal of Materials Science, Vol. 23, 1988, pp. 2589-2594. https://doi.org/10.1007/BF01111919
  8. Igawa, N., Taguchi, T., Nozawa, T., Snead, L., Hinoki, T., McLaughlin, J., Katoh, Y., Jitsukawa, S., and Kohyama, A., "Fabrication of SiC Fiber Reinforced SiC Composite by Chemical Vapor Infiltration for Excellent Mechanical Properties", Journal of Physics and Chemistry of Solids, Vol. 66, 2005, pp. 551-554. https://doi.org/10.1016/j.jpcs.2004.06.030
  9. Jones, R.H., Giancarli, L., Hasegawa, A., Katoh, Y., Kohyama, A., Riccardi, B., Snead, L.L., and Weber, W.J., "Promise and Challenges of $SiC_f/SiC$ Composites for Fusion Energy Applications", Journal of Nuclear Materials, Vol. 307-311, 2002, pp. 1057-1072. https://doi.org/10.1016/S0022-3115(02)00976-5
  10. Kim, W.J., Kang, S., Park, J., and Ryu, W.S., "Effect of SiC Whisker Formation on the Densification of Tyranno SA/SiC Composites Fabricated by CVI Process", Fusion Engineering and Design, Vol. 81, 2006, pp. 931-936. https://doi.org/10.1016/j.fusengdes.2005.07.013
  11. Katoh, Y., Kotani, M., Kishimoto, H., Yang, W., and Kohyama, A., "Properties and Radiation Effects in High-Temperature Pyrolyzed PIP-SiC/SiC", Journal of Nuclear Materials, Vol. 289, 2001, pp. 42-47. https://doi.org/10.1016/S0022-3115(00)00681-4
  12. Jones, R., Szweda, A., and Petrak, D., "Polymer Derived Ceramic Matrix Composites", Composites Part A: Applied Science and Manufacturing, Vol. 30, 1999, pp. 569-575. https://doi.org/10.1016/S1359-835X(98)00151-1
  13. Krenkel, W., "Cost Effective Processing of CMC Composites by Melt Infiltration (LSI process)", Ceramic Engineering and Science Proceedings, 2001, pp. 443-454.
  14. Sayano, A., Sutoh, C., Suyama, S., Itoh, Y., and Nakagawa, S. "Development of a Reaction Sintered Silicon Carbide Matrix Composite", Journal of Nuclear Materials, Vol. 271-272, 1999, pp. 467-471. https://doi.org/10.1016/S0022-3115(98)00802-2
  15. Takeda, M., Sakamoto, J., Imai, Y., and Ichikawa, H., "Thermal Stability of the Low Oxygen Content Silicon Carbide Fiber, Hi-$Nicalon^{TM}$", Composites Science and Technology, Vol. 59, 1999, pp. 813-819. https://doi.org/10.1016/S0266-3538(99)00012-3
  16. Kim, Y.W., Kim, S.H., Song, I.H., Kim, H.D., and Park, C.B., "Fabrication of Open-Cell, Microcellular Silicon Carbide Ceramics by Carbothermal Reduction", Journal of the American Ceramic Society, Vol. 88, 2005, 2949-2951. https://doi.org/10.1111/j.1551-2916.2005.00509.x
  17. Grande, T., Sommerset, H., Hagen, E., Wiik, K., and Einarsrud, M.A., "Effect of Weight Loss on Liquid Phase Sintered Silicon Carbide", Journal of the American Ceramic Society, Vol. 80, 1997, pp. 1047-1052.
  18. Mulla, M.A., and Krstic, V.D., "Low Temperature Pressureless Sintering of ${\beta}$ silicon Carbide with Aluminum Oxide and Yttrium Oxide Addition", Am Ceram Soc Bull, Vol. 70, 1991, pp. 439-443.
  19. Fukushima, M., Zhou, Y., Miyazaki, H., Yoshizawa, Y., Hirao, K., Iwamoto, Y., Yamazaki, S., and Nagano T., "Microstructural Characterization of Porous Silicon Carbide Membrane Support With and Without Alumina Additive", Journal of the American Ceramic Society, Vol. 89, 2006, pp. 1523-1529. https://doi.org/10.1111/j.1551-2916.2006.00931.x
  20. Eom, J.H., Kim, Y.W., Song, I.H., and Kim, H.D., "Microstructure and Properties of Porous Silicon Carbide Ceramics Fabricated by Carbothermal Reduction and Subsequent Sintering Process", Materials Science and Engineering: A, Vol. 464, 2007, pp. 129-134. https://doi.org/10.1016/j.msea.2007.03.076
  21. Patel, M., Saurabh, K., Prasad, V.B., and Subrahmanyam, J., "High temperature C/C-SiC Composite by Liquid Silicon Infiltration: a Literature Review", Bulletin of Materials Science, Vol. 35, 2012, pp. 63-73. https://doi.org/10.1007/s12034-011-0247-5
  22. Schulte-Fischedick, J., Zern, A., Mayer, J., Ruhle, M., Friess, M., Krenkel, W., and Kochendorfer, R., "The Morphology of Silicon Carbide in C/C-SiC Composites", Materials Science and Engineering: A, Vol. 332, 2002, pp. 146-152. https://doi.org/10.1016/S0921-5093(01)01719-1

Cited by

  1. Influence of pyrolysis and melt infiltration temperatures on the mechanical properties of SiCf/SiC composites vol.48, pp.2, 2022, https://doi.org/10.1016/j.ceramint.2021.09.231