• Title/Summary/Keyword: strength of matrix

Search Result 1,769, Processing Time 0.037 seconds

Cell Opening of High Resilience Polyurethane Foam I. Concentration Effect of Polyether Type Cell Opener (고탄성 폴리우레탄 발포체의 기포개방 I. 폴리에테르형 기포개방제의 농도 영향)

  • 송기천;이상목;이동호
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.679-690
    • /
    • 2001
  • High resilience PU foams were prepared with polyether type cell opener. The influences of cell opener concentration on the kinetics, rheology, structural stability morphology and open cell content of the obtained foam were investigated and the role of cell opener during cell opening was determined. And mechanical properties as a function of cell opener concentration were studied. It was observed that urea formation reaction was delayed due to high hydrophilicity of cell opener The decrease of viscosity and the increase of tan $\delta$ were confirmed with increasing cell opener concentration so that the resulted foam had low structural stability and high open cell content. The deterioration of matrix and uniform dispersion of hydrogen-bonded urea in matrix with cell opener concentration was revealed by SEM analysis. As a result, elastic properties of the foam matrix were decreased due to high hydrophilicity of cell opener during the preparation of high resilience polyurethane foam and foam with high open cell content resulted. Hardness, tensile strength, tear strength, elongation of foam were decreased with increasing cell opener concentration.

  • PDF

A Fundamental Study on the Workability of High Strength Concrete according to Kinds of Aggregate (골재의 종류에 따른 고강도 콘크리트의 시공 특성에 관한 기초적 연구)

  • 최희용;김규용;최민수;김진만;심옥진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.12-17
    • /
    • 1996
  • It is true that aggregate strength is usually not a factor in normal concrete strength because, the aggregate particle is several times stronger than the matrix and the transition zone in concrete. In other words, with most natural aggregates the strength of the aggregate is hardly utilized because the failure is determined by the other two phases. But aggregate characteristics that are significant to concrete technology include porosity, grading or size distribution, moisture absorption, shape and surface texture, crushing strength, elastic modulus, and the type of deleterious substances present. Therefore, in the area of high strength concrete, concrete is much more influenced by properties of aggregate. This experiment is performed to investigate how kinds of aggregare influence on the workability of high strength concrete. In this experiment, four types of aggregate is used, that is crushed river aggregate, crushed stone, recycled aggregate of low strength and recycled aggregate of high strength. In this study, we scrutinize a fundmental study on the workability of high strength concrete according to kinds of aggregate.

  • PDF

Microstructure and Strength Property of Reaction Sintered SiC Materials (반응소결 SiC 재료의 미세조직 및 강도 특성)

  • LEE SANG-PILL;SHIN YUN-SEOK;LEE JIN-KYUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.380-385
    • /
    • 2004
  • The efficiency of complex slurry preparation route for developing the high performance SiC matrix of RS-SiCf/SiC composites has been investigated. The green bodies for RS-SiC materials prior to the infiltration of nw/ten silicon were prepared with various C/SiC complex matrix slurries, which associated with both different sizes of starting SiC particles and blending ratios of starting SiC and carbon particles. The characterization of RS-SiC materials was examined by means of SEM, TEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, process optimization methodology is also discussed. The flexural strength of RS-SiC materials greatly depended on the content of residual Si. The decrease of starting SiC particle size in the C/SiC complex slurry was effective for improving the flexural strength of RS-SiC materials.

  • PDF

Effects of Alloying Elements on the Tensile Strength and Electrical Conductivity of Cu-Fe-P Based Alloys (Cu-Fe-P계 합금의 강도 및 전기전도도에 미치는 첨가 원소의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm $Mg_3P_2$ precipitation phase was observed having lattice parameter $a:12.01{\AA}$ such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting (진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성)

  • Park, Gwang-Hun;Park, Seong-Gi;Sin, Sun-Gi;Park, Yeong-Cheol;Lee, Gyu-Chang;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

Fabrication and Mechanical Property of $Al_2$O$_.3$/Al Composite by Pressureless Infiltration (무가압 침윤법에 의한 $Al_2$O$_.3$/Al 복합재료 제조와 기계적 특성)

  • 이동윤;박상환;이동복
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.303-309
    • /
    • 1998
  • The fabrication of Al2O3/Al composite by pressureless infiltration was investigated by the change of Mg and Si content in Al alloy infiltration process and infiltration atmosphere. The effect of alloying elements infiltration atmosphere and interfacial reactants between Al alloy matrix and Al2O3 particles were in-vestigated in terms of bendingstrength and harness test,. The fabrication of Al2O3/Al composite by the vestigated in terms of bending strength and hardness test. The fabrication of Al2O3/Al composite by the pressureless infiltration was done in nitrogen atmosphere with Mg in Al alloy. It was successfully fabricated at $700^{\circ}C$ according to Mg contents in Al alloy and infiltration condition. Because Mg in the Al alloy and ni-trogen atmosphere of infiltratio condition produced Mg-N compound(Mg3N2) it decreased the wetting an-gle between molten Al alloy and Al2O3 particles by coating on surface of Al2O3 particles. The fracture strength of Al2O3/Al-Mg composite was 800MPa and Al2O3/Al-Si-Mg composite was 400MPa. Si in Al alloy decreased the interfacial strength between Al alloy matrix and Al2O3 particles.

  • PDF

The Stress Analysis of Web Frame by the Transfer Matrix Method (전달(傳達)매트릭스법(法)에 의(依)한 선체특설늑골(船體特設肋骨) 해석(解析))

  • Yim, S.J.;Yang, Y.S.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 1975
  • As the size of tanker increase, the analysis and strength prediction of the transverse web frames in a tanker have become important problems. Therefore, several papers dicussed the subject and various method of analysis have been presented. Most of these studies are based on the elastic framework analysis. Framework analysis is carried out by the matrix methods. The matrix methods used most frequently are the displacement method, force method and the transfer matrix method. In this paper, the analysis is carried out by the transfer matrix method. The program has been tested by IBM 1130 and the results of example show good agreements with those by the program of stress analysis, STRESS, which was developed in M.I.T.

  • PDF