• Title/Summary/Keyword: strength design method

Search Result 2,578, Processing Time 0.03 seconds

Development of Design Method of Compression(SSC) Anchor (압축헝 앵커의 설계법 개발)

  • 임종철;홍석우;이태형;이외득
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • For the design of compression anchor, three things should be considered. The first is a resistance force by skin friction, the second is a tension strength of tendon, and the third is a compressive strength of grout. Especially, compressive strength of grout is the most important design parameter of compression anchor. When compression anchor is pulled out from the ground, the compressive strength of grout increases by confining pressure of ground($\sigma_{tg$). Here, $\sigma_{tg$ is the confining pressure which is produced by earth pressure at rest and by lateral expansion of grout. We call this phenomenon of increase of confining pressure "poisson effect". In this paper, the design method of compression anchor called SSC anchor and the computer program for the design are developed through compression tests of anchor body grout.ody grout.

  • PDF

Development of Strength and Durability Estimation System for Power Transmission Cylindrical Gears (원통치차의 강도평가 시스템 개발연구)

  • 정태형;변준형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 1993
  • A strength and durability estimation system of involute cylindrical gears which are commonly used as power transmission devices is developed on the personal computer, which analyzed and/or evaluates the gear design and the service performance at the point of view of strength and durability. The typical considerations are the bending strength and the sunface durability, and the strength and durability estimations are carried out using the reliable standards of AGMA&ISO. In addition, the finite element analysis (FEM) of tooth bending stress is conducted in order to compare the real maximum stress with the estimaed bending stress by the standard. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength & durability are appraised seperately by each method, and a series of the estimation processes is integrated into the system can be used in the initial design at the view point of strength and durability. And it is useful to the purpose of the trouble-shooting of gear system and the purpose of introducing the methods for maintaining design strength in service, with appraising the strength and durability after design or with appraising the influencing factors, as a whole. Therefore, this strength and durability estimation system can help the aim of automatic design of cylindrical gears.

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed;G. Khushbu;M. Anbarasu;Ather Khan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.117-125
    • /
    • 2024
  • This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.

Analysis on Application of Limit State Design Method for Bridge Evaluation Considering PSC Beam Bridge Experiment Results (PSC Beam교의 실측실험을 반영한 한계상태설계법 기반 교량 평가법 적용 분석)

  • Kim, Kyunghyun;Yoo, Minsun;Paik, Inyeol;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.235-244
    • /
    • 2021
  • This study analyzes the applicability of limit state design method on bridge evaluation by considering the experiment of the existing bridge. The test strength of the member is obtained from the PSC beam bridge experiment. The test strength is compared with the calculated strength obtained from the statistical characteristics of material test strength and the two values are almost the same. The response modification factor and dynamic impact factor are obtained from the vehicle loading test. The rating factor is calculated by applying limit state design method as well as current evaluation method and the results are compared. The reliability index of the test bridge is calculated by using the statistical properties of the member strength obtained from material test and simulation. When the statistical properties of the PSC beam tested in this study are applied, the reliability index with a larger value was obtained than the reliability index obtained with the statistical properties of the design code.

An Experimental Study on the Combined Effect of Installation Damage and Creep of Geogrids (지오그리드의 시공시 손상 및 크리프 복합효과에 대한 실험적 연구)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.561-568
    • /
    • 2005
  • The factors affecting the long-term design strength of geogrid can be classified into factors on creep deformation, installation damage, temperature, chemical degradation and biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. Current practice in the design of reinforced soil is to calculate the long-term design strength of a reinforcement damaged during installation by multiplying the two partial safety factors, $RF_{ID} and RF_{CR}$. This method assumes that there is no synergy effect between installation damage and creep deformation of geogrids. Therefore, this paper describes the results of a series of experimental study, which are carried out to assess the combined effect of installation damage and creep deformation for the long-term design strength of geogrid reinforcement. The results of this study show that the tensile strength reduction factors, RF, considering combined effect between installation damage and creep deformation is less than that calculated by the current design method.

  • PDF

A Development on Method of Strengthening Design for the Different Status of Damages (손상상태를 고려한 부재의 보강설계법 개발)

  • 한만엽;이성준
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • Recently, many strengthening methods are developed to repair damaged structures, when the original structure is under loading, which causes the difference of initial stresses between original member and bonded material. However, current design method or theory, which mostly depends on ultimately strength design, cannot account the difference of initial stresses between members, and it disregards the reduction of nominal strength. In this study, a new strengthening design theory and the amount of strengthening which can account the difference of initial stresses are developed, and applied to the case when a structure in service is repaired. The results show that the amount of strengthening material depends on the status of damages of structure, and the nominal strength is reduced depending on the degree of damages.

Evaluation of Corrosion Fatigue Strength and Corrosion Degradation of TMCP Steel (TMCP 강의 부식열화 및 부식피로강도 평가)

  • Park, Jin-Hyung;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.241-246
    • /
    • 2003
  • In order to develop a method of corrosion fatigue design and estimate reliability of TMCP steel using as the material of heavy industries and plants, its corrosion susceptibilities, corrosion fatigue strength, and determination of fatigue design criterion considering corrosion degradation were investigated. From the results, the corrosion characteristic of TMCP steel is very susceptible in 3.5wt.% NaCl solution. Its susceptibility was linearly increased with the solution temperature increase. The corrosion fatigue strength in $25${\circ}$, 3.5wt.% NaCl solution is very lower than that of in air. And also, it was decreased with the frequency decrease in the same environment. It is expected that the developed corrosion fatigue design method for TMCP steel is useful. However, it is necessary to verify its reliability for actual application.

  • PDF

Design of Transverse Steel Amounts of High Strength Reinforced Tied Columns by Axial Capacity Design Method (내력설계법에 의한 고강도 철근콘크리트 띠철근 기둥의 횡보강근량 산정)

  • 한범석;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.151-156
    • /
    • 2003
  • On the basis of the philosophy that "the compressive axial load capacity after spalling of shell concrete should be maintained as that before spalling" by applying the confinement model of high strength concrete proposed in the previous proceeding paper and equivalent lateral confining pressure considering configurations of transverse reinforcement, the amounts of transverse reinforcement from the compressive capacity design method about high strength reinforced concrete tied columns can be calculated through the formula proposed in this paper. The proposed design equation of transverse steel amounts for high strength reinforced concrete tied columns was quite agreeable with the test results of HSC tied columns conducted by other researchers as well as author.as author.

  • PDF

An Optimum Design Method of Hypoid Gear by Minimizing Volume (하이포이드 기어의 체적 최소화 최적 설계)

  • Lee, Ki-Hun;Lee, Geun-Ho;Bae, In-Ho;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.55-61
    • /
    • 2007
  • The hypoid gear has advantage for the high reduction ratio and compactness. But, geometry design and strength evaluation of the hypoid gear depend on the machine tool of specific production companies because the geometry design and strength evaluation of the hypoid gear are complex and difficult. This paper proposes the development of the design programs to satisfying the geometry and strength of a hypoid gear through optimization technique using the genetic algorithm. The genetic algorithm is designed to optimize a method for minimizing volume. The existing design of hypoid gear in the forklift truck axle is compared with the results of developed optimum design program.