• Title/Summary/Keyword: strength criterion

Search Result 631, Processing Time 0.027 seconds

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Statistical Investigation of Fatigue Life Prediction of the Spot Welded Lap Joint(I) : Application of Weibull Probability Distribution Function (정용접이음재의 피로수명 예측에 관한 확률적 검토(I) : Weibull 확률 분포함수 적용)

  • 손일선;백동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.214-221
    • /
    • 1999
  • Spot welding is very important and useful technology in fabriaction of the thin sheet structure such as the automobile, train and air craft, Because fatigue strength of the spot welding point is however considerably lower than base metal due to stress concentration at the nugget edge, reasonable fatigue strength evaluation of spot welded lap joint is very important to estimate the reliability and durability of th spot welded structure and to establish a criterion of ling life fatigue design. For reasonalbe fatigue strength evaluation, it is necessary to estimate the fatigue strength of spot welded lap joints, systematically. So far, many investigators have numerically and experimentally studied on the systematic fatigue strength estimation for various spot welded lap joints, and the methods suggested has been considerably accumulated. By the way, for applying them in practical fatigue design of the thin sheet structure fabricated by spot welding ,it is also necessary to verify their efficiency and reliability on the predicted results, Therefore, in this study, a statistical fatigue strength estimation method for spot welded lap joints was developed by using the Weibull probability distribution function. From the result, it was found that fatigue strength and fatigue life of the spot welded lap joints having various dimension were able to be statically predicted . And also, a reliable criterion for long life fatigue design of the spot welded lap joint could be established.

  • PDF

New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile (표준 거칠기 단면의 실험적 검증에 의한 새로운 거칠기 계수 및 전단강도 기준식)

  • Jang, Hyun-Sic;Sim, Min-Yong;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.561-577
    • /
    • 2021
  • The ten standard roughness profiles suggested by Barton and Choubey (1977) were extended to make three-dimensional (3D) joint models whose profiles were identical at any cross section. Replicas of joint models were produced using plaster of Paris, and direct shear tests were performed to verify the joint roughness coefficients (JRC) of the standard roughness profiles. Joint shear strengths measured by direct shear tests were compared with those predicted by the shear failure criterion suggested by Barton (1973) based on JRC, joint compressive strength (JCS), and joint basic friction angle (𝜙b). Shear strengths measured from joints of the first and fourth standard roughness profiles were close to predicted values; however, shear strengths measured from the other joint models were lower than predicted, the differences increasing as the roughness of joints increased. Back calculated values for JRC, JCS, and from the results of the direct shear tests show measured shear strengths were lower than predicted shear strengths because of the JRC values. New JRC were back calculated from the measured shear strength and named JRCm. Values of JRCm were lower than the JRC for the standard roughness profiles but show a strong linear relationship to JRC. Corrected JRCm values for the standard roughness profiles are provided and revised relationships between JRCm and JRC, and new shear strength criterion are suggested.

Strength Anisotropy through Artificial Weak Plane of Mudstone (인공연약면을 따른 이암의 강도이방성에 관한 연구)

  • Lee, Young-Huy;Jeong, Ghang-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.111-120
    • /
    • 2008
  • The characteristic of induced anisotropy is investigated in this study for the Pohang mudstone involving the cut plane discontinuity. The uniaxial and triaxial compression tests are performed for anisotropic rocks with artificial joint to look into anisotropic strength characteristics. Both the uniaxial compressive strength and triaxial compressive strength show the lowest value at the angle of cut plane, ${\beta}=30^{\circ}$ and the shoulder type of anisotropy is obtained. Anisotropy ratio (Rc) in uniaxial compression measures 9.0, whereas Rc=1.29-1.98 in triaxial compression is appeared. A series of analyses are made with the test results to derive the suitable parameter values when it is applied to the Ramamurthy (1985) failure criterion. The result of uniaxial compression test is analyzed by introducing the n-index into Ramamurthy failure criterion. The result shows that, n=l is suitable for ${\beta}=0^{\circ}{\sim}30^{\circ}$ and n=3 is suitable for ${\beta}=30^{\circ}{\sim}90^{\circ}$. To analyze the result of triaxial compression test by Ramamurthy failure criterion, anisotropy ratio in uniaxial compression test is added to Ramamurthy's equation and material constants are estimated by modified Ramamurthy's equation. When these values are applied back to Ramamurthy failure criterion, the predicted values are well fitted to the test results. And strength anisotropy for failure criteria of Jaeger (1960), McLamore & Gray (1967) and Hoek & Brown (1980) are also investigated.

A Study on Comparison of Strength Parameters of Hydrostatic Pressure-Dependent Yield Criteria (정수압에 의존하는 항복기준의 강도정수 비교연구)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.529-535
    • /
    • 2016
  • In this theoretical study, the strength parameters of the Drucker-Prager yield criterion and Mohr-Coulomb yield criterion were set to equal values, in order to analyze the correlation among the parameters. The Drucker-Prager strength parameters ${\alpha}$ and k were represented by the Mohr-Coulomb strength parameters c and ${\phi}$. Specifically it can be seen that k is function of c, ${\phi}$ and ${\alpha}$ is function of ${\phi}$ alone. Drucker-Prager strength parameter ${\alpha}$ increases as the internal friction angle of soil increases. ${\alpha}_{av}$ which is the average of ${\alpha}_c$ and ${\alpha}_i$ was proportional to internal friction angle in which ${\alpha}_c$ and ${\alpha}_i$ are ${\alpha}$ values corresponding to the circles of the Drucker-Prager yield cirteria circumscribes and inscribes the Mohr-Coulomb yield criterion respectively. The values of the ${\alpha}_{av}$ was 0.07 and 0.29 which correspond to the internal friction angle of $10^{\circ}$ and $45^{\circ}$ respectively. In addition, value of ${\alpha}_c/{\alpha}_i$ was proportional to internal friction angle of soil and the values of ${\alpha}_c/{\alpha}_i$ 1.12 and 1.62 which corresponds to internal friction angle of $10^{\circ}$ and $45^{\circ}$ respectively.The influence of the Mohr-Coulomb strength parameters on the Drucker-Prager strength parameter k was investigated and it was found that k was mainly influenced by the cohesion of the soil, except in the case of the minimum assumed value of c of 10kPa. The deviator stresses, $S_{c0}$ and $S_{t0}$, which correspond to the cases of the Mohr-Coulomb yield criterion under uniaxial compression and uniaxial tension, respectively, and $S_{0(ave)}$, which is the average value of $S_{c0}$ and $S_{t0}$, decrease as the internal friction angle increases. Furthermore, the hexagon, which represents the Mohr-Coulomb yield locus, becomes more irregular, and the deviations of $S_{c0}$ and $S_{t0}$ from $S_{0(ave)}$ also increase, as the internal friction angle increases.

Formability Evaluation of Advanced High-strength Steel Sheets in Role Expansion Based on Combined Continuum-Fracture Mechanics (복합 연속체 파괴 역학에 기초한 초고강도강 판재의 구멍 넓힘 시험 성형성 평가)

  • Ma, N.;Park, T.;Kim, D.;Yoo, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.227-230
    • /
    • 2009
  • In order to predict failure behavior of advanced high-strength steel sheets (AHSS) in hole expansion tests, damage model was developed considering surface condition sensitivity (with specimens prepared by milling and punching: 340R, TRIP590, TWIP940). To account for the micro-damage initiation and evolution as well as macro-crack formation, the stress triaxiality dependent fracture criterion and rate-dependent hardening and ultimate softening behavior were characterized by performing numerical simulations and experiments for the simple tension and V-notch tests. The developed damage model and the characterized mechanical property were incorporated into the FE program ABAQUS/Explicit to perform hole expansion simulations, which showed good agreement with experiments.

  • PDF

Impact Performance Evaluation of Advanced High-strength Steel Sheets Based on Combined Continuum-Fracture Mechanics (복합 연속체-파괴 역학에 기초한 초고강도강의 충격 특성 평가)

  • Ma, N.;Park, T.;Kim, D.;Seok, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.231-234
    • /
    • 2009
  • Based on combined continuum-fracture mechanics, fracture criterion was utilized to predict impact performance of advanced high-strength steel sheets: 340R and TWIP940. The macro-crack propagation behavior at high stress triaxiality was characterized by V-notch tests while deformation behavior at high strain rate was characterized by simple tension tests with various cross head speeds. The characterized mechanical properties were incorporated into the FE program ABAQUS/Explicit to simulate the charpy impact tests, which showed good agreement with experiments.

  • PDF

Analysis of the Behavior of Concrete Compressive Member with Various Cross-Sectional Shapes Strengthened by CFS (다양한 단면을 지닌 콘크리트 압축부재의 CFS 보강에 따른 거동해석)

  • 이상호;이민우;김장호;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.605-610
    • /
    • 2002
  • The purpose of this study is to develop an analytic model which can describe the behavior or concrete compressive member strengthened by CFS(Carbon Fiber Sheet) with various cross-sectional shapes such as circular. square, and octagonal and various laminate angles. The failure criterion of laminated CFS is based on Tsai-Wu failure criterion. The stress strain model of confined concrete compressive member is based on an equation proposed by Mander. The effective lateral confining pressure is considered and modified according to various cross-sectional shapes. Octagonal cross-section shows the best results in the aspect of ductility, while circular does in compressive strengthening effects. In addition, [0/0/0/0] laminate in which the direction of fiber is parallel to the direction of principal stress shows the superior strength and ductility than other laminates. The analytic results show that strength and ductility of the analytic model depend on the cross-sectional shapes as well as the laminate angles.

  • PDF

Nonlinear Finite Element Analysis of Steel Composite Girders (합성형 거더의 3차원 비선형 거동해석)

  • 주영태;강병수;성원진;박대열;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.173-176
    • /
    • 2003
  • Progressive failure analysis of steel composite double T-beam is performed to investigate the mechanical effects of steel composite fabricated in the webs of double-T beam to replace concrete placing forms. The analysis is based on nonlinear finite element scheme considering material nonlinearities of concrete, reinforcing bar and PS steel. Four-parameter strength envelope defines the hardening and softening phenomena of concrete with consideration of the various levels of confining pressures. Rankine maximum strength criterion defines the elasto-plasticity of PS steel and reinforcing bar, and Von Mises $J_2$ failure criterion for steel plate which wraps the concrete webs of double T-beam. A 6m long two-span steel composite double T-beam is analyzed and compared with the experimental results.

  • PDF

Shear Strength Prediction of RC Beams without Stirrup using Transverse Strain Evaluation (전단보강철근이 없는 RC보의 수직변형률 평가를 통한 전단강도 산정)

  • Shin Geun Ok;Rhee Chang Shin;Jeong Jae Pyong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.275-278
    • /
    • 2005
  • This paper presents a model for evaluating the contribution by arch action and frame action to shear resistance in shear-critical reinforced concrete beams without stirrup. The rotating angle softened truss model is employed to calculate the shear deformation of the web and the relative axial displacement of the compression and tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. The transverse strain obtained from the proposed model is selected for shear failure criterion. Using the failure criterion, shear strength of RC slender beams without stirrup is predicted.

  • PDF