Browse > Article
http://dx.doi.org/10.9720/kseg.2021.4.561

New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile  

Jang, Hyun-Sic (Research Institute for Earth Resources, Kangwon National University)
Sim, Min-Yong (Department of Geophysics, Kangwon National University)
Jang, Bo-An (Department of Geophysics, Kangwon National University)
Publication Information
The Journal of Engineering Geology / v.31, no.4, 2021 , pp. 561-577 More about this Journal
Abstract
The ten standard roughness profiles suggested by Barton and Choubey (1977) were extended to make three-dimensional (3D) joint models whose profiles were identical at any cross section. Replicas of joint models were produced using plaster of Paris, and direct shear tests were performed to verify the joint roughness coefficients (JRC) of the standard roughness profiles. Joint shear strengths measured by direct shear tests were compared with those predicted by the shear failure criterion suggested by Barton (1973) based on JRC, joint compressive strength (JCS), and joint basic friction angle (𝜙b). Shear strengths measured from joints of the first and fourth standard roughness profiles were close to predicted values; however, shear strengths measured from the other joint models were lower than predicted, the differences increasing as the roughness of joints increased. Back calculated values for JRC, JCS, and from the results of the direct shear tests show measured shear strengths were lower than predicted shear strengths because of the JRC values. New JRC were back calculated from the measured shear strength and named JRCm. Values of JRCm were lower than the JRC for the standard roughness profiles but show a strong linear relationship to JRC. Corrected JRCm values for the standard roughness profiles are provided and revised relationships between JRCm and JRC, and new shear strength criterion are suggested.
Keywords
rock joint; shear strength criterion; joint roughness coefficient (JRC); joint replica; direct shear test; back analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alejano, L.R., Muralha, J., Ulusay, R., Li, C.C., Perez-Rey, I., Karakul, H., Chryssanthakis, P., Aydan, O., 2018, ISRM suggested method for determining the basic friction angle of planar rock surfaces by means of tilt tests, Rock Mechanics and Rock Engineering, 51, 3853-3859.   DOI
2 Belem, T., Homana-Etienne, F., Souley, M., 2000, Quantitative parameters for rock joint surface roughness, Rock Mechanics and Rock Engineering, 33, 217-242.   DOI
3 Grasselli, G., Wirth, J., Egger, P., 2002, Quantitative three-dimensional description of a rough surface and parameter evolution with shearing, International Journal of Rock Mechanics and Mining Sciences, 39, 789-800.   DOI
4 Jang, H.S., Jang, B.A., Kim, Y., 2005, Estimation of joint roughness coefficient (JRC) using modified divider method, The Journal of Engineering Geology, 15, 269-280 (in Korean with English abstract).
5 Ladanyi, B., Archambault, G., 1970, Simulation of shear behaviour of a jointed rock mass, In: Somerton, W.H. (Ed.), Proceedings of the 11th U.S. Symposium on Rock Mechanics (USRMS), Berkeley, 105-125.
6 Lee, Y.H., Carr, J.R., Barr, D.J., Hass, C.J., 1990, The fractal dimension as a measure of the roughness of rock discontinuity profiles, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27, 453-464.   DOI
7 Miller, S.M., McWilliams, P.C., Kerkering, J.C., 1990, Ambiguities in estimating fractal dimensions of rock fracture surfaces, Proceedings of the 31st U.S. Symposium on Rock Mechanics (USRMS), Colden, 147-478.
8 Wang, C., Wang, L., Karakus, M., 2019, A new spectral analysis method for determining the joint roughness coefficient of rock joints, International Journal of Rock Mechanics and Mining Sciences, 113, 72-82.   DOI
9 Wu, T.H., Ali, E.M., 1978, Statistical representation of joint roughness, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15, 259-262.   DOI
10 Fan, W., Cao, P., 2020, A new 3D JRC calculation method of rock joint based on laboratory-scale morphology testing and its application in shear strength analysis, Bulletin of Engineering Geology and the Environment, 79, 345-354.   DOI
11 Maerz, N.H., Franklin, J.A., Bennett, C.P., 1990, Joint roughness measurement using shadow profilometry, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27, 329-343.
12 Park, J.W., Song, J.J., 2013, Numerical method for the determination of contact areas of a rock joint under normal and shear loads, International Journal of Rock Mechanics and Mining Sciences, 58, 8-22.   DOI
13 Lee, K.H., Jang, H.S., Jang, B.A., 2019, Experimental study for optimal method in measuring the basic friction angle of rock, The Journal of Engineering Geology, 22, 565-578 (in Korean with English abstract).
14 Liu, X.G., Zhu, W.C., Yu, Q.L., Chen, S.J., Li, R.F., 2017, Estimation of the joint roughness coefficient of rock joints by consideration of two-order asperity and its application in double-joint shear tests, Engineering Geology, 220, 243-255.   DOI
15 Patton, F.D., 1966, Multiple modes of shear failure in rock and related material, Ph.D. Thesis, University of Illinois, 282p.
16 Wang, G., Zhang, Y., Jiang, Y., Liu, P., Guo, Y., Liu, J., Wang, S., 2018, Shear behaviour and acoustic emission characteristics of bolted rock joints with different roughnesses, Rock Mechanics and Rock Engineering, 51, 1885-1906.   DOI
17 Tse, R., Cruden, D.M., 1979, Estimating joint roughness coefficients, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 303-307.   DOI
18 Wakabayashi, N., Fukushige, I., 1995, Experimental study on the relation between fractal dimension and shear strength, In: Myer, L.R., Cook, N.G.W., Goodman, R.E., Tsang, C.F. (Eds.), Fractured and jointed rock masses, Balkema, Rotterdam, 125-131.
19 Wang, G., Zhang, X., Jiang, Y., Wu, X., Wang, S., 2016, Rate-dependent mechanical behavior of rough rock joints, International Journal of Rock Mechanics and Mining Sciences, 83, 231-240.   DOI
20 Yang, Z.Y., Chiang, D.Y., 2000, An experimental study on the progressive shear behavior of rock joints with tooth-shaped asperities, International Journal of Rock Mechanics and Mining Sciences, 37, 1247-1259.   DOI
21 Cruden, D.M., Hu, X.Q., 1988, Basic friction angles of carbonate rocks from Kananaskis country, Canada, Bulletin of Engineering Geology and the Environment, 38, 55-59.
22 Barton, N., 1973, Review of a new shear-strength criterion for rock joints, Engineering Geology, 7, 287-332.   DOI
23 Barton, N., Choubey, V., 1977, The shear strength of rock joints in theory and practice, Rock Mechanics, 10, 1-54.   DOI
24 Byerlee, J.D., 1967, Frictional characteristics of granite under high confining pressure, Journal of Geophysical Research, 72, 3639-3648.   DOI
25 Grasselli, G., Egger, P., 2003, Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters, International Journal of Rock Mechanics and Mining Sciences, 40, 25-40.   DOI
26 Hsiung, S.M., Ghosh, A., Ahola, M.P., Chowdhury, A.H., 1993, Assessment of conventional methodologies for joint roughness coefficient determination, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30, 825-829.   DOI
27 Jang, B.A., Kim, T.H., Jang, H.S., 2010, Characterization of the three dimensional roughness of rock joints and proposal of a modified shear strength criterion, The Journal of Engineering Geology, 20, 319-327 (in Korean with English abstract).
28 Lane, K.S., Heck, W.J., 1964, Triaxial testing for strength of rock joints, In: Spokes, E.M., Christiansen, C.R. (Eds.), Proceedings of the 6th U.S. Symposium on Rock Mechanics (USRMS), Rolla, 98-108.
29 Jang, H.S., Kang, S.S., Jang, B.A., 2014, Determination of joint roughness coefficients using roughness parameters, Rock Mechanics and Rock Engineering, 47, 2061-2073.   DOI
30 Kulatilake, P.H.S.W., Shou, G., Huang, T.H., Morgan, R.M., 1995, New peak shear strength criteria for anisotropic rock joints, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32, 673-697.   DOI
31 Stimpson, B., 1981, A suggested technique for determining the basic friction angle of rock surfaces using core, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 63-65.   DOI
32 Gonzalez, J., Gonzalez-Pastoriza, N., Castro, U., Alejano, L.R., Muralha, J., 2014, Considerations on the laboratory estimate of the basic friction angle of rock joints, In: Alejano, R., Perucho, A., Olalla, C., Jimenez, R. (Eds.), Rock Engineering and Rock Mechanics: Structures in and on Rock Masses (EUROCK 2014), ISRM European Regional Symposium, Vigo, 199-204.
33 Yu, X., Vayssade, B., 1991, Joint profiles and their roughness parameters, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28, 333-336.   DOI