• 제목/요약/키워드: streamline method

검색결과 172건 처리시간 0.019초

재순환 영역이 있는 축대칭 난류 확산화염의 구조 (II) (The Structure of Axisymmeric Turbulent Diffusion Flame(II))

  • 이병무;신현동
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.70-77
    • /
    • 1986
  • 본 논문에서는 재순환 영역이 존재하는 축대칭 난류 확산화염 구조예측의 전 단계로서, 이미 발표된 바있는 필자의 실험 데이터를 바탕으로 하여 등온유동에 서의 난류모델을 검토한다. 유선의 곡률이 큰 유동에 2방정식 모델을 적용함은 큰 결점을 보완한 수정-2방정식모델을 채택하여 실험결과와 비교, 검토하여 모델의 타당성을 조사하였다.

DAF공정의 궤적분석에서 유선과 운동함수의 적용이 기포와 플록의 충돌효율에 미치는 영향 (Effect of Application of Streamline and Mobility Function on Bubble-Floc Collision Efficiency for Trajectory Analysis of DAF Process)

  • 김성진;곽동희;임영환
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.676-684
    • /
    • 2004
  • Many researchers have been carrying on study to figure out the exact collision efficiency between bubble and floc. Collision efficiency can has generally been quantified by using trajectory analysis which uses the hydrodynamic, the electrostatic and van der waals forces. Two types of method are considered to induce the hydrodynamic force in the trajectory analysis. One is to use stream function and the other is to use mobility function. There was some difference between stream and mobility function depending upon modelling factors and conditions in trajectory analysis.

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발 (Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow)

  • 한건연;백창현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

수심평균 혼합거리 난류 모형의 개발 및 와점성계수의 평가 (Development of Depth-averaged Mixing Length Turbulence Model and Assessment of Eddy Viscosity)

  • 최승용;한건연;황재홍
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.395-409
    • /
    • 2011
  • 본 연구의 목적은 개수로에서 난류모의를 위한 2차원 모형을 개발하는데 있다. 연구모델은 Streamline Upwind / Petrov-Galerkin 유한요소법과 Boussinesq의 와점성이론을 기초로 하였는데, 수심적분을 취한 혼합거리 모형과 난류의 이방성과 국부평형의 조건을 적용하였다. 모형의 보정과 검증을 위해서 해석해와 관측자료를 활용하였다. 몇 가지 수치모의를 수행함으로써 난류모형의 민감도와 계산수행 능력을 확인할 수 있었다. 본 연구모형은 자연하천에서의 모형 적용성 확인을 위해서 한강유역에 적용하였고 모의치는 실측자료와 비교하였다. 개발된 모형은 자연하천에서의 관측자료와 비교적 잘 일치하는 것으로 나타났다. 결론적으로 본 연구의 2차원 유한요소모형은 개수로에서의 난류모의에 기초한 흐름분포에 있어 신뢰할만한 결과를 제공하는 것으로 나타났다.

비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향 (Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact)

  • 이두일;이재형;이상현
    • 대기
    • /
    • 제26권3호
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.

HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구 (Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct)

  • 정수진;류수열;김태훈
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

철도차량을 위한 선형유도전동기의 설계 (Design of Linear Induction Motet (LIM) for Transit Applications)

  • 박도영;김봉섭;김동성;남용윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 특별세미나 특별세션
    • /
    • pp.181-188
    • /
    • 2006
  • Outline of design procedures of Linear Induction Motor (LIM) for transit vehicle applications are presented. The design steps are based on the classical design method. Constrains specific for transit applications are discussed. Heuristic data obtained from the various LIMs are utilized to streamline the presented design steps.

  • PDF

원심압축기의 유동해석을 위한 준삼차원 해석기법 (Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis)

  • 안상준;김광용
    • 한국유체기계학회 논문집
    • /
    • 제6권1호
    • /
    • pp.30-36
    • /
    • 2003
  • This paper presents the analysis of flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no backsweep. The results are compared with experimental data and the results of three-dimensional inviscid analysis with those by finite element method. It is found that the agreements with experimental data are good for the cases where viscous effects are not dominant.

박막이 부착된 채널내의 2차원 층류유동장에 대한 연구 (Study on Two-Dimensional Laminar Flow through a Finned Channel)

  • 윤석현;정재택
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.53-59
    • /
    • 2002
  • A two-dimensional laminar flow through a channel with a pair of symmetric vertical fins is investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The Stokes flow for this channel is first investigated analytically and then the other laminar flows by numerical method. For analytic method, the method of eigen function expansion and collocation method are employed. In numerical solution for laminar flows, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, the streamline patterns are shown and the additional pressure drop due to the attached fins and the force exerted on the fin are calculated. It is clear that the force depends on the length of fins and Reynolds number. When the Reynolds number exceeds a critical value, the flow becomes asymmetric. This critical Reynolds number Re/sub c/ depends on the length of the fins.