• Title/Summary/Keyword: streaming system

Search Result 679, Processing Time 0.027 seconds

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

Data processing techniques applying data mining based on enterprise cloud computing (데이터 마이닝을 적용한 기업형 클라우드 컴퓨팅 기반 데이터 처리 기법)

  • Kang, In-Seong;Kim, Tae-Ho;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, cloud computing which has provided enabling convenience that users can connect from anywhere and user friendly environment that offers on-demand network access to a shared pool of configurable computing resources such as smart-phones, net-books and PDA etc, is to be watched as a service that leads the digital revolution. Now, when business practices between departments being integrated through a cooperating system such as cloud computing, data streaming between departments is getting enormous and then it is inevitably necessary to find the solution that person in charge and find data they need. In previous studies the clustering simplifies the search process, but in this paper, it applies Hash Function to remove the de-duplicates in large amount of data in business firms. Also, it applies Bayesian Network of data mining for classifying the respect data and presents handling cloud computing based data. This system features improved search performance as well as the results Compared with conventional methods and CPU, Network Bandwidth Usage in such an efficient system performance is achieved.

Performance Optimization Strategies for Fully Utilizing Apache Spark (아파치 스파크 활용 극대화를 위한 성능 최적화 기법)

  • Myung, Rohyoung;Yu, Heonchang;Choi, Sukyong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Enhancing performance of big data analytics in distributed environment has been issued because most of the big data related applications such as machine learning techniques and streaming services generally utilize distributed computing frameworks. Thus, optimizing performance of those applications at Spark has been actively researched. Since optimizing performance of the applications at distributed environment is challenging because it not only needs optimizing the applications themselves but also requires tuning of the distributed system configuration parameters. Although prior researches made a huge effort to improve execution performance, most of them only focused on one of three performance optimization aspect: application design, system tuning, hardware utilization. Thus, they couldn't handle an orchestration of those aspects. In this paper, we deeply analyze and model the application processing procedure of the Spark. Through the analyzed results, we propose performance optimization schemes for each step of the procedure: inner stage and outer stage. We also propose appropriate partitioning mechanism by analyzing relationship between partitioning parallelism and performance of the applications. We applied those three performance optimization schemes to WordCount, Pagerank, and Kmeans which are basic big data analytics and found nearly 50% performance improvement when all of those schemes are applied.

Analysis on the Viewing Intention of Mobile Personal Broadcasting by using Hedonic-Motivation System Adoption Model (모바일 개인방송 시청 요인 분석: HMSAM 모델을 중심으로)

  • Jae-Wan Lim;Byung-Ho Park
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.89-106
    • /
    • 2016
  • The latest movement in live video streaming service is mobile personal broadcasting (MPB), which refers to consumers accessing the service through social media with mobile devices, such as smartphones and tablet PCs. This service is possible through the advancements in mobile video technology and platforms. Features such as enhanced user interaction, personalization, and real-time broadcasting, combined with a greater variety of content, have led to the development of MPB. The increase in MPB users calls for research, including that on the hedonic motivational angle. This study aims to assess MPB users' intrinsic motives through the hedonic-motivation system adoption model (HMSAM) using seven factors: joy, temporal dissociation, escapism, focused immersion, perceived ease of use, perceived usefulness and intention to watch. Survey data collected from 154 samples were analyzed with statistical techniques, such as structural equation modeling. Results showed that time dissociation, escapism, and perceived ease of use have a positive relationship with heightened enjoyment. Joy significantly affects focused immersion and intention to watch. Escapism also had a statistically significant influence on focused immersion. This study contributes to the advancement of the MPB study under the HMSAM theoretical framework and offers practical suggestions to managers to enhance MPB content viewership.

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

A Kernel-level RTP for Efficient Support of Multimedia Service on Embedded Systems (내장형 시스템의 원활한 멀티미디어 서비스 지원을 위한 커널 수준의 RTP)

  • Sun Dong Guk;Kim Tae Woong;Kim Sung Jo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.460-471
    • /
    • 2004
  • Since the RTP is suitable for real-time data transmission in multimedia services like VoD, AoD, and VoIP, it has been adopted as a real-time transport protocol by RTSP, H.323, and SIP. Even though the RTP protocol stack for embedded systems has been in great need for efficient support of multimedia services, such a stack has not been developed yet. In this paper, we explain embeddedRTP which supports the RTP protocol stack at the kernel level so that it is suitable for embedded systems. Since embeddedRTP is designed to reside in the UBP module, existing applications which rely ell TCP/IP services can proceed the same as before, while applications which rely on the RTP protocol stack can request HTP services through embeddedRTp API. EmbeddedRTP stores transmitted RTP packets into per session packet buffer, using the packet's port number and multimedia session information. Communications between applications and embeddedRTP is performed through system calls and signal mechanisms. Additionally, embeddedRTP API makes it possible to develop applications more conveniently. Our performance test shows that packet-processing speed of embeddedRTP is about 7.5 times faster than that oi VCL RTP for multimedia streaming services on PDA in spite that its object code size is reduced about by 58% with respect to UCL RTP's.

A Study on the Quality Monitoring and Prediction of OTT Traffic in ISP (ISP의 OTT 트래픽 품질모니터링과 예측에 관한 연구)

  • Nam, Chang-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2021
  • This paper used big data and artificial intelligence technology to predict the rapidly increasing internet traffic. There have been various studies on traffic prediction in the past, but they have not been able to reflect the increasing factors that induce huge Internet traffic such as smartphones and streaming in recent years. In addition, event-like factors such as the release of large-capacity popular games or the provision of new contents by OTT (Over the Top) operators are more difficult to predict in advance. Due to these characteristics, it was impossible for an ISP (Internet Service Provider) to reflect real-time service quality management or traffic forecasts in the network business environment with the existing method. Therefore, in this study, in order to solve this problem, an Internet traffic collection system was constructed that searches, discriminates and collects traffic data in real time, separate from the existing NMS. Through this, the flexibility and elasticity to automatically register the data of the collection target are secured, and real-time network quality monitoring is possible. In addition, a large amount of traffic data collected from the system was analyzed by machine learning (AI) to predict future traffic of OTT operators. Through this, more scientific and systematic prediction was possible, and in addition, it was possible to optimize the interworking between ISP operators and to secure the quality of large-scale OTT services.

Web-based Text-To-Sign Language Translating System (웹기반 청각장애인용 수화 웹페이지 제작 시스템)

  • Park, Sung-Wook;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.265-270
    • /
    • 2014
  • Hearing-impaired people have difficulty in hearing, so it is also hard for them to learn letters that represent sound and text that conveys complex and abstract concepts. Therefore it has been natural choice for the hearing-impaired people to use sign language for communication, which employes facial expression, and hands and body motion. However, the major communication methods in daily life are text and speech, which are big obstacles for the hearing-impaired people to access information, to learn and make intellectual activities, and to get jobs. As delivering information via internet become common the hearing-impaired people are experiencing more difficulty in accessing information since internet represents information mostly in text forms. This intensifies unbalance of information accessibility. This paper reports web-based text-to-sign language translating system that helps web designer to use sign language in web page design. Since the system is web-based, if web designers are equipped with common computing environment for internet browsing, they can use the system. The web-based text-to-sign language system takes the format of bulletin board as user interface. When web designers write paragraphs and post them through the bulletin board to the translating server, the server translates the incoming text to sign language, animates with 3D avatar and records the animation in a MP4 file. The file addresses are fetched by the bulletin board and it enables web designers embed the translated sign language file into their web pages by using HTML5 or Javascript. Also we analyzed text used by web pages of public services, then figured out new words to the translating system, and added to improve translation. This addition is expected to encourage wide and easy acceptance of web pages for hearing-impaired people to public services.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

Research on hybrid music recommendation system using metadata of music tracks and playlists (음악과 플레이리스트의 메타데이터를 활용한 하이브리드 음악 추천 시스템에 관한 연구)

  • Hyun Tae Lee;Gyoo Gun Lim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.145-165
    • /
    • 2023
  • Recommendation system plays a significant role on relieving difficulties of selecting information among rapidly increasing amount of information caused by the development of the Internet and on efficiently displaying information that fits individual personal interest. In particular, without the help of recommendation system, E-commerce and OTT companies cannot overcome the long-tail phenomenon, a phenomenon in which only popular products are consumed, as the number of products and contents are rapidly increasing. Therefore, the research on recommendation systems is being actively conducted to overcome the phenomenon and to provide information or contents that are aligned with users' individual interests, in order to induce customers to consume various products or contents. Usually, collaborative filtering which utilizes users' historical behavioral data shows better performance than contents-based filtering which utilizes users' preferred contents. However, collaborative filtering can suffer from cold-start problem which occurs when there is lack of users' historical behavioral data. In this paper, hybrid music recommendation system, which can solve cold-start problem, is proposed based on the playlist data of Melon music streaming service that is given by Kakao Arena for music playlist continuation competition. The goal of this research is to use music tracks, that are included in the playlists, and metadata of music tracks and playlists in order to predict other music tracks when the half or whole of the tracks are masked. Therefore, two different recommendation procedures were conducted depending on the two different situations. When music tracks are included in the playlist, LightFM is used in order to utilize the music track list of the playlists and metadata of each music tracks. Then, the result of Item2Vec model, which uses vector embeddings of music tracks, tags and titles for recommendation, is combined with the result of LightFM model to create final recommendation list. When there are no music tracks available in the playlists but only playlists' tags and titles are available, recommendation was made by finding similar playlists based on playlists vectors which was made by the aggregation of FastText pre-trained embedding vectors of tags and titles of each playlists. As a result, not only cold-start problem can be resolved, but also achieved better performance than ALS, BPR and Item2Vec by using the metadata of both music tracks and playlists. In addition, it was found that the LightFM model, which uses only artist information as an item feature, shows the best performance compared to other LightFM models which use other item features of music tracks.