• 제목/요약/키워드: stream direction

검색결과 329건 처리시간 0.03초

도시하천의 바람 특성 - 서울 강남구 양재천을 대상으로 - (Wind Characteristics at Urban Stream - Case of Yangjae Stream at Gangnam-gu in Seoul -)

  • 이상정;이원보;김문성;이규석
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.201-208
    • /
    • 2012
  • Global warming due to the climate change causes environmental problems such as urban heat island (UHI), air pollutant deposition, urban heavy rainfall, etc. Urban stream plays an important role on mitigating UHI as open space as well as an ecological corridor in urban area. In order to investigate the wind characteristics of urban stream in the case of Yangjae Stream at Daechi-dong, Gangnam-gu in Seoul, the wind direction and wind speed data were observed and analyzed using a propellor type RM-Young wind monitor. The results show that the prevailing wind direction was southwest. However, easterly wind is the prevailing one between 8:00 and 12:00. Strong wind whose Beaufort scale is four or more blew frequently from 12:00 to 18:00. In terms of seasonal frequency, the spring shows the highest frequency, then winter was the next.

일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(IV) (Strategy Prospects of Environmental Restoration of Stream Side in Japan(IV))

  • 박재현;우보명;이헌호
    • 한국환경복원기술학회지
    • /
    • 제3권4호
    • /
    • pp.84-90
    • /
    • 2000
  • The objective of this study was to introduce the current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. 1. In order to change the recent direction of the forest conservation and erosion control projects which are focused on the restoration of stream side ecology, we have to quit the past erosion control policy such as water control purpose, and establish new plans regarding on the forest conservation and erosion control which is considered the regional environmental restoration of watershed. 2. When we restore stream side and river side ecosystem, we should establish restoration plans which can keep the original nature of stream and river. 3. The forest conservation and erosion control construction projects for the restoration of stream and river ecosystem should be planned for the perfect restoration of their ecosystem by way of sustainable maintenance and management. 4. The restoration direction of stream and river ecosystem needs to be planned to restore the diversity of small geographies such as waterway, shoal and puddles rather than flattening of stream bed. 5. The main principle in the restoration of stream and river ecosystem is to accomplish forest conservation and erosion control construction projects which can conserve the existing stream and river ecosystem.

  • PDF

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • 농업과학연구
    • /
    • 제45권3호
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

능선환경으로 본 아산 용두천 유역 및 주변 지역에 있어서 청동기시대 취락의 최적 입지환경 (The Optimal Location Environment of the Bronze Age Settlement in Yongdu Stream and its Surrounding Area in Asan through the Ridge Environment's Perspective)

  • 박지훈;이애진
    • 한국지형학회지
    • /
    • 제27권4호
    • /
    • pp.89-112
    • /
    • 2020
  • The purpose of this study is as follows: First, we restore the optimal topographical environment of the Bronze Age settlements in the Yongdu Stream and its surrounding area in Asan City. Second, we reveal the relative importance of the topographical factors that the Bronze Age people considered when selecting their dwelling locations. We compared and analyzed topographical factors (ridge scale, ridge direction, slope direction of the ridge, micro-landform of the ridge, position of the ridge) from the ridge's environmental perspective of 123 Bronze Age dwellings (hereinafter referred to as dwellings) found in the survey area for that purpose. The results are as follows: First, from a macro perspective, the optimal topographical environment for the location of the Bronze Age settlement is the second ridge that have the E-W direction. And from a micro perspective, it is the southeast direction slope of the Crest slope at the summit. Second, it appears that the Bronze Age people have taken important consideration in determining the location of their dwelling in the following order: ① position (eg. summit), ② micro-landform (eg. Crest slope, Upper slope), ③ slope direction (eg. southward, South, Southeast), ④ scale (eg. sub-ridge, secondary, tertiary), ⑤ direction (eg. E-W, NNE-SSE).

산지급류소하천(山地急流小河川)에 있어서 하상미지형(河床微地形)과 유목(流木) 특성(特性) (Characteristics of Channelbed and Woody Debris on Mountainous Stream)

  • 전근우;김민식;박완근;에자키 츠기오
    • 한국산림과학회지
    • /
    • 제86권1호
    • /
    • pp.69-79
    • /
    • 1997
  • 유목(流木) 대책(對策)에 필요한 기초 자료를 얻기 위해 산지급류소하천(山地急流小河川)에 있어서 유목(流木)의 발생, 이동 및 체류(滯留)에 영향을 미치는 하상미지형(河床微地形)의 특성과 유목(流木)의 본수, 크기, 형태, 부후도(腐朽度), 체류(滯留) 방향(方向) 및 종류 등의 유목(流木) 특성(特性)을 파악하였다. 1. 유목(流木)의 체류(滯留) 본수(本數)는 하폭(河幅)에 비례하여 증가하는 경향이 나타났으나 하천의 종단 물매에는 크게 영향을 받지 않았다. 특히 확폭부(擴幅部)에서도 복수(複數) 유로(流路)가 발달된 구간을 중심으로 다량의 유목(流木)이 체류(滯留)하고 있었으며, 현유로(現流路)보다는 하상퇴적지(河床堆積地)에 주로 체류(滯留)하고 있었다. 2. 조사 대상인 직경 10cm 이상, 길이 2m 이상의 유목(流木)은 총 402개로 100m당 체류(滯留) 본수(本數)는 35.3개였다. 또한 유목(流木)의 평균 길이와 흉고직경은 각각 4.0m, 14.0cm였으며, 구간별 유목(流木)의 크기는 하류로 갈수록 길이가 짧아지고 직경이 커지는 경향이 나타났다. 3. 유목(流木)이 이동할 때에는 토석류(土石流)나 조도(粗度)가 큰 하상(河床) 재료(材料)와 접촉되기 때문에 하류(下流) 구간(區間)과 일부 상류(上流) 구간(區間)에서 뿌리가 없는 유목(流木)이 다수 발견되었으며, 상류(上流) 구간(區間)에서도 유목(流木)의 원형이 크게 손상된 경우가 많았다. 또한 유목(流木)의 부후도(腐朽度)는 하류로 갈수록 심했으며, 하류의 일부 구간에는 부후(腐朽)가 상당히 진행된 유목(流木)이 발견되어 이전에도 유목(流木)이 체류(滯留)하고 있었던 것이 확인되었다. 4. 유목(流木)의 체류(滯留) 방향(方向)은 유심(流心)에 평행하여 체류(滯留)하는 경우와 직각으로 체류(滯留)하는 경우가 각각 276 : 126으로 유심(流心)에 평행하여 체류(滯留)하는 경우가 많았다. 그러나 일부 구간에는 유심(流心)에 직각 방향으로 체류(滯留)하는 유목(流木)이 다수 분포하여 유목(流木) 자체가 불안정할 뿐 아니라 이동(移動) 토사(土砂)가 체류(滯留)되기 쉬우므로 이에 대한 대비책이 마련되어야 할 것이다. 5. 유목(流木)의 종류는 침엽수인 일본잎갈나무가 전체 유목(流木)중 약 2/3에 해당하는 256본을 차지하고 있었다. 그러나 일본잎갈나무의 경우 지상부에 비해 지하부가 빈약하기 때문에 하상(河床) 재료(材料)의 작은 충격이나 소규모의 하상변동(河床變動)에 의해서도 유출되기 쉬우므로 하안림(河岸林)의 수종으로 선택할 경우에는 신중을 기해야 할 것이다.

  • PDF

A Study on Joints, developed in Tobong-san Area

  • Kim, Joo-Hwan
    • 동굴
    • /
    • 제65호
    • /
    • pp.1-10
    • /
    • 2004
  • Joint reflects the structure of the earth. And in many cases joints controls the developments of stream directions. In this studying area three joint sets are represented. One is concentrated to the north and the other is deviated $50^{circ}-60^{circ}$ from north to east and west. It is uncertain that the master joint set is a fault line, but the presence of the structural line is evident from the joint strike frequency. The Spearman's $\Upsilon$ between joint patterns and the stream directions is about 0.73.

하천의 지형학적 인자와 식생종수의 관계 -한강수계를 중심으로- (Relationship between Stream Geomophological Factors and the Vegetation Abundance - With a Special Reference to the Han River System -)

  • 이광우;김태균;심우경
    • 한국조경학회지
    • /
    • 제30권3호
    • /
    • pp.73-85
    • /
    • 2002
  • The purpose of this study was to develop prediction models for plant species abundance by stream restoration. Generally the stream plant is affected by stream gemophology. So in this study, the relationship between the vegetation abundance and stream gemophology was developed by multiple regression analysis. The stream characteristics utilized in this study were longitudinal slope, transectional slope, micro-landforms through the longitudinal direction, riparian width and geometric mean diameter and biggest diameter of bed material, and cumulated coarse and fine sand weight portion. The Pyungchang River with mountainous watershed and the Kyungan stream and the Bokha stream in the agricultural region were selected and vegetation species abundance and stream characteristics were documented from the site at 2~3km intervals from the upper stream to the lower. The Models for predicting the vegetation abundance were developed by multiple regression analysis using SPSS statistics package. The linear relationship between the dependant(species abundance) and independant(stream characteristics) variables was tested by a graphical method. Longitudinal and transectional slope had a nonlinear relationship with species abundance. In the next step, the independance between the independant variables was tested and the correlation between independant and dependant variables was tested by the Pearson bivariate correlation test. The selected independant variables were transectional slope, riparian width, and cumulated fine sand weight portion. From the multiple regression analysis, the $R^2$for the Pyungchang river, Kyungan stream, Bokga stream were 0.651, 0.512 and 0.240 respectively. The natural stream configuration in the Pyungchang river had the best result and the lower $R^2$for Kyunan and Bokha stream were due to human impact which disturbed the natural ecosystem. The lowest $R^2$for the Bokha stream was due to the shifting sandy bed. If the stream bed is fugitive, the prediction model may not be valid. Using the multiple regression models, the vegetation abundance could be predicted with stream characteristics such as, transection slope, riaparian width, cumulated fine sand weigth portion, after stream restoration.

이동강우에 의한 유출영향분석 (Runoff Analysis due to the Moving Storm)

  • 한건연;전민우;최규현
    • 한국수자원학회논문집
    • /
    • 제37권10호
    • /
    • pp.823-836
    • /
    • 2004
  • 두개의 지표면과 그 사이에 있는 하도로 이루어진 유역을 가정하여 이동강우에 대한 유출을 운동파 이론을 적용하므로서 해석하여 다양한 강우이동속도의 경우를 비교 분석하였다. 이동강우는 하천의 상류방향, 하류방향, 횡방향으로 0.25∼2.0m/s의 속도로 이동시켰으며, 이때 강우분포형은 균등분포형, 전진형, 지연형, 중앙집중형을 적용하였다. 횡방향 이동강우의 경우에 첨두유량이 가장 크게 나타났고, 상류방향의 이동강우에 대한 첨두유량이 가장 작게 나타났다. 강우분포형에 대한 유출의 민감도는 강우이동속도가 빠를수록 감소하였다. 강우이동속도가 빠를수록 첨두시간이 빨라지며, 수문곡선은 급격히 얇아짐을 알 수 있다.

컴퓨터 해석을 통한 Slot 코팅공정에서 운전방향의 코팅품질 평가 및 다이 설계 (Coater Die Design and Coating Quality Evaluation in the Machine Direction of Slot Coating Through Computer Simulation)

  • 김태훈;이두이;성달제;류민영
    • Elastomers and Composites
    • /
    • 제48권4호
    • /
    • pp.282-287
    • /
    • 2013
  • 슬롯코팅은 평판 디스플레이의 부품을 위해 유리에 감광제를 코팅방법으로 많이 쓰이고 있다. 갈수록 고화질의 디스플레이가 요구됨에 따라 코팅의 고품질도 요구되고 있다. 슬롯코팅에서 코팅의 품질은 노즐방향의 코팅 균일성과 운전방향의 코팅 균일성으로 평가된다. 노즐방향의 코팅 균일성은 코터다이 내부의 설계에 의존되며 운전방향의 코팅 균일성은 코터다이 외부의 모양과 운전조건에 의존된다. 본 연구에서는 스롯코팅에서 운전방향의 코팅 균일성에 대해서 컴퓨터해석을 통하여 조사하였다. 해석에서 다이 외부의 형상으로 다이 립 각도와 길이를 변수로 하였고, 운전조건으로는 코팅속도를 변수로 하여 코팅 현상을 분석하고 코팅의 품질을 평가하였다. 코팅속도가 커질수록 코팅두께가 얇아지며 코팅의 균일성이 증대되었으나 maniscus형성이 불안정하여 코팅의 안정성은 감소되었다. Down stream 다이 립 각도가 커질수록 코팅두께의 편차는 작아졌으며, Down stream 다이 립 길이가 길수록 코팅 두께는 얇아졌고 안정적인 코팅이 이루어지기까지의 시간이 길어졌다.

일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(V) -한국적(韓國的) 적용(適用)을 중심(中心)으로- (Strategy Prospects of Environmental Restoration of Stream Side in Japan(V) -With a Special Reference to the Application of Korean Style-)

  • 박재현;우보명;권태호;이헌호
    • 한국환경복원기술학회지
    • /
    • 제4권1호
    • /
    • pp.80-89
    • /
    • 2001
  • The objective of this study was to introduce the current status and development strategy for the environmental restoration of stream side in Japan, and to consider the methodology which could be effectively applied to the environmental restoration of stream side in Korea. 1. We should establish a new paradigm of forest conservation and erosion control which can emphasize the restoration of the stream side ecosystem and reduce soil movement in the areas. Also, in the past, the objective of forest conservation and erosion control was to fix soil by constructing permanent structures. The direction of future forest conservation and erosion control needs to be new forest conservation and erosion control technology to prevent large scale soil movement but allow small scale soil movement to conserve sound ecosystem and biotic habitats. 2. In the past, the goal of forest conservation and erosion control planning was to fix the amount of soil movement by constructing permanent facilities. Forest conservation and erosion control planning in the future needs to change the techniques which could prevent soil movement from large scale of soil disasters, but allow soil movement effectively to a small and middle scale's soil movement. Also, it is considered to change erosion control dams from non passing type to passing type. 3. In the point of ecological conservation aspects, we should evaluate the effects of new forest conservation and erosion control methods which are emphasized on the restoration of the stream side ecosystem. Also, forest conservation and erosion control construction projects for restoring stream and river ecosystem should be planned for perfectly restorating their ecosystems by the way of sustainable maintenance and management. 4. The restoration direction of stream and river ecosystems needs to be restoring the diversity of small geographies such as waterway, shoal and puddles rather than flattening stream bed. And the restoration of the stream side ecosystem should provide continuity of the stream side environment which allows desirable biological habitats, and environmentally sound facilities to harmonize with the environment.

  • PDF