• Title/Summary/Keyword: strata and rocks

Search Result 69, Processing Time 0.022 seconds

Development Case of Regional Materials for Learning of Geology Units, Primary and Middle School Science at Jaeundo (초·중등과학 지질단원의 학습을 위한 자은도의 지역화 자료 개발 사례)

  • Kim, Hai-gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.110-120
    • /
    • 2020
  • It is generally reported that field learning and a class using regional materials motivate learning and give a positive effect on learning of geology unit, science subject. The purpose of this study is to develop and to suggest regional materials for learning of geology unit, science subject at Jaeundo. The results of this study are as follows. Regional materials were developed at three locations (namjin dockyard area, yangsan beach area and dunjang beach area) of the study area. Namjin dockyard area (A site) is composed of terrain of sea cliff, sand beach and mud flat. Sedimentary rocks, weathering phenomenon of rocks and strata of various shape are distributed in sea cliff of A site. Yangsan beach area (B site) is composed of coastal terrain as sea cliff and sand beach about 1.5km long. Sedimentary rocks and rhyolite are distributed in sea cliff of B site. Tafoni formed by weathering process of rocks are developed on sedimentary rock outcrop of B site. Dunjang beach area (C site) is composed of coastal terrain of sea cliff, sand beach about 2km long and sea stack. Stratified sedimentary rocks are distributed in sea cliff of C site. Sea stack located in near halmi island on the west side of dunjang beach area is a good sample showing erosion process of sea cave for a long time. Unique geomorphology and geology phenomena distributed in 3 sites at Jaeundo can be used as regional materials for learning of geology unit, science subject. And, Regional materials shall be used in conjunction with the text book data of geology units. These 3 sites of the study area are worth using as field learning course for elementary and middle school students.

Modeling of Hydrocarbon Generation and Expulsion in the Tyee Basin, Oregon Coast Range, USA (미국 북서부 오레곤주 타이분지 내 탄화수소 생성과 배출에 대한 모델링 연구)

  • Jang, Hee-Jeong;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.55-72
    • /
    • 2009
  • The timing of hydrocarbon generation and expulsion from source rocks can be evaluated by reconstructing the geohistory of the basin using petroleum system modeling. The Tyee basin is generally considered having a high hydrocarbon generation potential For the southern part of the basin, the basin evolution from a structural and stratigraphic points of view, the thermal history, and the burial history were reconstructed and simulated using numerical tools of basin modeling. An evaluation of organic geochemistry for the potential source rocks and the possible petroleum systems were analysed to improve the understanding of the hydrocarbon charge of the basin. Organic geochemical data indicate that the undifferentiated Umpqua Group, mudstones of the Klamath Mountains, and coals and carbonaceous mudstones in the Remote Member and the Coquille River Member are the most potential gas-prone source rocks in the basin. The relatively high maturity of the southern Tyee basin is related to deep burial resulting from loading by the Coos bay strata. And the heating by intrusion from the western Cascade arc also affects to the high maturity of the basin. The maturation of source rocks, the hydrocarbon generation and expulsion were evaluated by means of basin modeling. The modeling results reveal that the hydrocarbon was generated in all potential source rocks and an expulsion only occurred from the Remote Member.

Paleomagnetism of the cretaceous sedimentary rocks in the Yongyang Sub-Basin (영양소분지에 분포하는 경상누층군에 대한 고지자기 연구)

  • 도성재
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.189-201
    • /
    • 1999
  • Paleomagnetic and rock magnetic investigations have been carried out for the Cretaceous Hanyang Group, exposed in the Yongyang Sub-Basins within the Kyeongsang Basin, eastern South Korea. A total of 452 oriented core samples was drilled from 31 sits for the study. The in-situ site mean direction is more dispersed than the mean direction after bedding correction, indicating that the fold test is positive at 95% confidence level. In addition, the stepwise unfolding of the characteristic remanent magfold test is positive at 95% confidence level. In addition, the stepwise unfolding of the characteristic remanent magnetization reveals that a maximum value of k is observed at 90% unfolding. Furthermore, the rock magnetic investigations and electron microscope observations of the representative samples show that the main magnetic carrier of the Hayang Group is the detrital specular hematite of single and pseudo-single domain sizes with negligible contribution of pigmentary hematite grains. These results collectively imply that the ChRM direction is the primary component acquired at the time of the formation of the strata. Provided the primary nature of the ChRM, a magnetostratigraphic correlation between polarities of the studied formation and the Geomagnetic Time Scale indicates that the Hayang Group in the Yongyang Sub-Basin can be correlated to the Cretaceous Long Normal superchron. The paleomagnetic pole position from this study is significantly different from those of the Hayang group in the Euiseong the Milyang sub-Basins. Rather the paleomagnetic pole position of the Hayang Group of the study area is closer to that of the Quaternary period or present time of the Korean Peninsula. It is hypothesized that the study area might be rotated about 25$^{\circ}$ aticlockwise with respect to the Euiseong and Milyang Sub-Basins after the formation of the strata and aquisition of the ChRM, although there is not enough geologic evidence supporting the rotation hypothesis.

  • PDF

K-Ar Ages of Cretaceous Fossil Sites, Seoyuri, Hwasun, Southern Korea (화순 서유리의 백악기 화석산지에 대한 K-Ar 연대)

  • Kim, Cheong Bin;Kang, Seong Seung
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.618-626
    • /
    • 2012
  • The Cretaceous fossil sites of Seoyuri in Hwasun was designated as the Korean Natural Monument No. 487 in November 2007. It provides important resources for paleoenvironmental studies, including theropod trackways, plant fossils, mudcracks, ripple marks, and horizontal bedding. The Cretaceous sedimentary strata contain a wide variety of volcanic pebbles, 5-40 cm in diameter in the lower portion and are overlain by the Late Cretaceous Hwasun andesite. Whole rock absolute K-Ar age determinations were performed on six volcanic pebbles from the Cretaceous sedimentary strata and on two samples from the overlaying Hwasun andesite. These ages indicate that the rocks belong to the period between the Turonian of the late Cretaceous (91-70 Ma) and the Pliocene age of the early Cenozoic ($63.4{\pm}1.2$ and $62.1{\pm}1.2$ Ma). Thus, the K-Ar ages indicate that the maximum geological age of the dinosaur track-bearing sedimentary deposits is about ca. 70 Ma. Therefore, it suggests that the age is comparable to the formation ages of the dinosaur footprints-bearing deposits in Sado area of Yeosu (71-66Ma).

Palaeomagnetism of Early Cretaceous Sedimentary Rocks in Chingyo-Sach'ŏn Area, Southwestern Kyŏngsang Basin (경상분지 남서부 진교-사천 지역 전기백악기 퇴적암에 대한 고자기 연구)

  • Kim, In-Soo;Kang, Hee-Cheol;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.519-539
    • /
    • 1993
  • A total of 264 independently oriented core samples were collected from 26 sites in the southwestern part (the Naktong Trough) of the Cretaceous $Ky{\check{o}}ngsang$ Basin in south Korea. The sampled formations comprise the sedimentary Shindong and the Hayang Groups of the Lower Cretaceous age. Alternating field and thermal demagnetizations were conducted. Characteristic remanent magnetization (ChRM) was relatively easily isolated in each formation except in the Chinju formation, from which only remagnetization circles were observed. Even though an extensive use of the fold test was not possible due to the nearly homoclinal nature of the strata in the area, we believe that the ChRM of each formation is of primary origin based on the following grounds: The in-situ ChRM direction of each formation is different from the present geomagnetic field direction. Fisherian precision parameter becomes enhanced through the tilt correction in all formations, closely to the values required for a positive fold test. Three out of the five studied formations pass the reversal test. The mean palaeomagnetic pole position from the studied area is found to be statistically different from the contemporary pole from the Chinese block exclusive of the Shandong area. The difference in magnetic declination suggests a $14.5^{\circ}$ (${\pm}10.5^{\circ}$) clockwise rotation of the studied area relative to the Chinese block comprising the west of the Tan-Lu fault. On the other hand, any significant difference in magnetic inclination and concurrent palaeolatitude is not observed between the studied area and China as well as the other area (Taegu-Andong area) in the $Ky{\check{o}}ngsang$ Basin. The dual nature of the magnetic polarity confirmed in all formations suggests an older than 124 Ma (Neocomian or older) age of the studied sedimentary strata.

  • PDF

Potential as a Geological Field Course of the Northwest Coast, Goheung Gun (고흥군 북서 해안의 지질학습장으로서의 활용가능성)

  • Kim, Hai-Gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.163-172
    • /
    • 2016
  • The aim of this study is to investigate the geological features distributed in the northwest coast, Goheung Gun as a geological field course of all levels. The study area is about 1.6km coast in direction of northwest from Sumundong ferry to Jangsun beach. The learning contents of the geology units in science textbooks from elementary school to high school was analyzed and, geomorphology and geology of study area was investigated for this study. In this study area, lots of geomorphology and geology elements related to the learning contents of the geology units in science textbooks were founded such as gravel beach, sea cliff, granite, rhyolite, andesite, gneiss, sedimentary rocks, fault, unconformity, stratification, cross bedding, graded bedding, intrusion structure, vein, dyke, plant fossil and spheroidal weathering. Characteristically, strata, stratification, granite, sedimentary rocks(conglomerate, sandstone, mudstone and shale), fault, plant fossil and weathering phenomenon were commonly involved with the learning contents of the geology units in elementary school science, middle school science and high school earth science I, II. This area is to be recommended as a site of geological field course for all students from elementary school to high school, as various field work materials for geological learning were distributed and, geological observation trail of about 400m in length for observation of strata and so on was installed along the coast in direction of the northwest from Sumundong ferry.

Mineral Compositions and Distribution in the Drilling Cores from the Miocene Pohang Basin, Korea (마이오세 포항분지 시추코어의 구성광물과 분포특성)

  • Lee, Jinhyun;Hwang, Jinyeon;Son, Moon;Son, Byeong Seo;Oh, Jiho;Lee, Hyomin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.113-126
    • /
    • 2017
  • In order to investigate the geological storage potential of $CO_2$, X-ray diffraction analysis were conducted for drilling core samples collected from the two drilling sites located in Yonil group of the Miocene Pohang Basin. As a result, various minerals were identified such as quartz, plagioclase, orthoclase opal-CT, smectite, mica, illite, kaolin mineral, chlorite, calcite, gypsum, pyrite, dolomite, and siderite. Smectite was detected in almost all of core samples, and relatively large amounts of smectite were observed in the cores from deeper strata. Opal-CT, mainly occurred in the upper interval of cores, was formed by diagenesis of amorphous diatoms. It shows a tendency that d101 value of cristobalite decreases with depth from $4.10{\AA}$ to $4.05{\AA}$. The almost identical variations in mineral composition with depth are observed at the two sites. This fact indicates that rocks distributed at the two sites were probably deposited in the similar depositional environments. It is determined that the strata in the study area can play roles of cap-rock for $CO_2$ storage, because the considerable amounts of smectite were contained in the rocks through the cores.

Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin (의성분지 동부에 분포하는 백악기 화산암류의 화산층서와 암석학적 연구)

  • 정종옥;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.238-253
    • /
    • 2000
  • In the eastern part of the Euiseong Basin acidic~intermediate volcanic rocks widely distribute on the Cretaceous sedimentary basement. Coeval granitic rocks and dyke rocks intruded into the volcanic rocks. Volcanic stratigraphy of study area are andesite lava, dacitic lapilli tuff, dacitic flow-banded lava, rhyolitic bedded tuff, rhyolitic massive tuff, dacitic massive lava, rhyolitlc welded tuff occur from the lower to the upper strata. $SiO_2$ content of the volcanic rocks range from 51 to 74 wt.%. With the increase of $SiO_2$, the contents of $TiO_2$, $Al_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ decrease but those of $K_2$O increase. The contents of $Na_2$O show dispersive variation. This trend is quite sim-ilar to the major oxide variation in the volcanic rocks from the Yucheon sub-basin. The geochemical natures indicate that the volcanic rocks in the study area are discriminated to the island-arc type high K to medium K calc-alkaline rocks. The compositional variation of the volcanic rocks can be explained by the plagioclase fractionation of the volcanic magmas originated from similar source materials. The volcanic stratigraphy seems to have formed by at least two eruptive sequences of andesitic to rhyolitic and dacitic to rhyolitic magmas which underwent crystallization differentiation.

  • PDF

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.

Stratigraphy and Petroleum Geochemical Characteristics of Jiaolai Basin in Shandong Province of China (중국 교래분지의 층서와 석유지화학적 특성)

  • Cheong, Tae-Jin;Oh, Jae-Ho;Lee, Young-Joo;Kim, Ji-Hoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Jiaolai Basin is the Cretaceous continental sedimentary basin developed in Shandong Province of China. It is interpreted as a pull-apart basin which is filled with fluvio-lacustrine sediments and volcanic rocks. The sedimentary strata are divided into three formations: Laiyang Formation, Qingshan Formation and Wangshi Formation in ascending order. Laiyang Formation of the early Cretaceous consists of conglomerate, sandstone and shale, which are grey, black or red in color, respectively. Qingshan Formation of early Cretaceous includes various kinds of volcanic rocks. Late Cretaceous Wangshi Formation consists of red conglomerate, sandstone and shale. Various types of oil shows are observed on many outcrops in the basin such as asphalt filing fissures, oil smelling, rocks wetted with oil. However, commercial oil discovery was not made. Laiyang Formation is the richest in terms of organic matter contents. Some grey or black shales of Laiyang Formation contain more than 1% of organic matter. Kerogens of some layers mainly consist of amorphous organic matter or pollen. Thermal maturity of the organic matter reached main oil generation zone and hydrocarbon genetic potential is fairly good. According to such geochemical data, some layers of Laiyang Formation can act as hydrocarbon source rocks.

  • PDF