DOI QR코드

DOI QR Code

Mineral Compositions and Distribution in the Drilling Cores from the Miocene Pohang Basin, Korea

마이오세 포항분지 시추코어의 구성광물과 분포특성

  • Lee, Jinhyun (Department of Geological Environmental Sciences, Pusan National University) ;
  • Hwang, Jinyeon (Department of Geological Environmental Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Environmental Sciences, Pusan National University) ;
  • Son, Byeong Seo (Department of Geological Environmental Sciences, Pusan National University) ;
  • Oh, Jiho (Department of Geological Environmental Sciences, Pusan National University) ;
  • Lee, Hyomin (Department of Geological Environmental Sciences, Pusan National University)
  • 이진현 (부산대학교 지질환경과학과) ;
  • 황진연 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과) ;
  • 손병서 (부산대학교 지질환경과학과) ;
  • 오지호 (부산대학교 지질환경과학과) ;
  • 이효민 (부산대학교 지질환경과학과)
  • Received : 2017.08.17
  • Accepted : 2017.09.26
  • Published : 2017.09.30

Abstract

In order to investigate the geological storage potential of $CO_2$, X-ray diffraction analysis were conducted for drilling core samples collected from the two drilling sites located in Yonil group of the Miocene Pohang Basin. As a result, various minerals were identified such as quartz, plagioclase, orthoclase opal-CT, smectite, mica, illite, kaolin mineral, chlorite, calcite, gypsum, pyrite, dolomite, and siderite. Smectite was detected in almost all of core samples, and relatively large amounts of smectite were observed in the cores from deeper strata. Opal-CT, mainly occurred in the upper interval of cores, was formed by diagenesis of amorphous diatoms. It shows a tendency that d101 value of cristobalite decreases with depth from $4.10{\AA}$ to $4.05{\AA}$. The almost identical variations in mineral composition with depth are observed at the two sites. This fact indicates that rocks distributed at the two sites were probably deposited in the similar depositional environments. It is determined that the strata in the study area can play roles of cap-rock for $CO_2$ storage, because the considerable amounts of smectite were contained in the rocks through the cores.

이산화탄소 지중저장 실증연구를 위하여 마이오세 포항분지의 연일층군에서 굴착한 2곳의 시추코어 시료에 대해 X-선회절분석을 통하여 구성광물을 분석하였다. 그 결과, 석영, 사장석, 정장석, Opal-CT, 스멕타이트, 운모, 일라이트, 카올린광물, 녹니석, 방해석, 석고, 황철석, 돌로마이트, 능철석 등의 다양한 광물이 나타났다. 스멕타이트는 대부분의 시료에서 산출되고 있으며, 하부에서 비교적 많이 함유되었다. 상부지층에 주로 산출하는 Opal-CT는 비정질 규조의 속성작용에 의한 것으로, 깊이에 따라 크리스토발라이트의 d(101) 값이 $4.10{\AA}$에서 $4.05{\AA}$으로 대체적으로 감소하는 경향이 나타났다. 두 시추공에서 광물성분의 분포가 서로 유사하게 대비되어, 거의 같은 퇴적환경에서 형성된 것으로 생각된다. 스멕타이트가 대부분의 심도에서 상당량 함유되어 있으므로, 이들 지층은 이산화탄소의 지중저장시 덮개암의 역할을 할 수 있을 것으로 판단된다.

Keywords

References

  1. Behl, R.J. and Garrison, R.E. (1994) The origin of chert in the Montrey Formation of California, USA. Proc. 29th Int'l Geol. Congr., Part C, 101-132.
  2. Cho, J.W. and Lim, D.I. (2002) Elemental Composition of Authigenic Siderites in the Early Holocene Coastal Sediments, Western Coast of Korea and Their Depositional Implication. Jour. Korean Earth Science Society, 23(8).
  3. Garrison, R.E., Mack, L.E., Lee, G.L., and Chun H.Y. (1979) Petrology, sedimentology and diagenesis of Miocene diatomaceous and opal-CT mudstones in the Pohang area, Korea. Jour. Geol. Soc. Korea, 15, 230-252.
  4. Grim, R.E. and Guven, N. (1978) Bentonite. Elsevier Scientific Publishing Company, 217-248.
  5. IEA (2008) Energy technology perspectives, Technical report, International energy agency (IEA). Paris, France. 643 p.
  6. Metz, B., Davidson O., Coninck, H.C., Loos, M., and Meyer, L.A. (2005) Intergovernmental panel on climate change special report on carbon dioxide capture and storage, Cambridge University Press, New York, USA, 442 p.
  7. Mizutani, S. (1977) Progressive ordering of cristobalitic silica in the early stage of diagenesis. Contributions to Mineralogy and Petrology, 61, 129-140. https://doi.org/10.1007/BF00374363
  8. Moon, H.S., Yun, H.S., Min, K.D., Lee, H.K., and Lee, J.C. (1990) Variations of Clay Mineral Assemblage, Colour, and Microfossil Abundance in the Tertiary Sediments from the Pohang Area During Chemical Weathering. Jour. Korean Inst. Mining Geol. 23(2), 201-213.
  9. Noh, J.H. (1994) Stratigraphy, lithology and diagenetic mineral facies of the tertiary Yeonil Group. Journal of the Petrological Society of Korea, 2, 91-99 (in Korean with English abstract).
  10. Son, B.K. (2011) Mineral temperatures of the sedimentary basins for petroleum resources exploration, Korea. J. Miner. Soc. Korea, 24(3), 165-178. https://doi.org/10.9727/jmsk.2011.24.3.165
  11. Son, M., Song, C.W., Kim, M.C., Cheon, Y., Jung, S., Cho, H., Kim, H.G., Kim, J.S., and Sohn, Y.K. (2013) Miocene crustal deformation, basin development, and tectonic implication in the Southeastern Korean Peninsula. Journal of the Geological Society of Korea. 49, 93-118 (in Korean with English abstract).
  12. Song, C.W., Son, M., Sohn, Y.K., Han, R.H., Shinn, Y.J., and Kim, J.C. (2015) A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. Journal of the Geological Society of Korea. v. 51, no. 1, p. 53-66. https://doi.org/10.14770/jgsk.2015.51.1.53
  13. Tateiwa, I. (1924) Geological atlas of Chosen, no. 2: Ennichi-Kyuryuho and Choyo Sheet (1 : 50,000). Geological Survey of Chosen, 16 p (in Japan).
  14. Tomita, K., Takahashi, H., and Watanabe, T. (1988) Quantification curves for mica/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner., 33, 379-390.
  15. Um, S.H., Lee, D.W., and Park, B.S. (1964) Geological map of Korea, Pohang Sheet (1:50,000). Geological Survey of Korea, 21 p (in Korean with English abstract).
  16. Woo, K.S. and Noh, J.H. (1997) Occurrence, mineral facies, and formation of carbonate concretion from the Yeonil Group. Journal of the Geological Society of Korea, v. 33, no. 4, 210-219.
  17. Woo, K.S., Noh, J.H., and Park, K.H. (2003) The origin of the carbonate concretions in the Yeonil Group, Pohang Basin. Journal of the Geological Society of Korea, v. 39, no. 1, p. 1-24.
  18. Yoon, S. (2010) Tectonic History of the Tertiary Yangnam and Pohang Basins, Korea. Journal of the Geological Society of Korea. v. 46, no. 2, p. 95-110.
  19. Yun, H., Yi, S., and Byun, H. (1997) Tertiary system of Korea. Paleontological Society of Korea Special Publication, 3, 1-30.
  20. Yun, H.S. (1986) Emended stratigraphy of the Miocene formations in the Pohang basin, Part I. Journal of Paleontological Society of Korea, 2, 54-69.

Cited by

  1. Earthquake-Induced Ground Deformations in the Low-Seismicity Region: A Case of the 2017 M5.4 Pohang, South Korea, Earthquake vol.35, pp.3, 2017, https://doi.org/10.1193/062318eqs160m
  2. Assessment of Pohang Earthquake-Induced Liquefaction at Youngil-Man Port Using the UBCSAND2 Model vol.10, pp.16, 2017, https://doi.org/10.3390/app10165424
  3. Numerical prediction of settlement due to the Pohang earthquake vol.37, pp.2, 2017, https://doi.org/10.1177/8755293020957345