• Title/Summary/Keyword: strains inoculation

Search Result 331, Processing Time 0.024 seconds

Sensuous Characteristics and Physiological Activity of Cheongtaejeon Tea Produced with the Inoculation of Microbial Strains (균주를 접종하여 제조한 청태전 차의 관능적 특성과 생리활성 효과)

  • Heo, Buk-Gu;Cho, Jung-Il;Park, Yong-Seo;Park, Yun-Jum;Cho, Ja-Yong
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.1
    • /
    • pp.139-148
    • /
    • 2010
  • This study was conducted to restore our traditional Cheongtaejeon tea and to develop the special products. We inoculated Cheongtaejeon tea with lactobacilli (Lactobacillus plantarum CHO 25) and the mixed microbial strains (L. plantarum CHO 25 + Saccharomyces cerevisiae + Bacillus amyloliquefaciens CHO 104). We also examined the sensuous characteristics and physiological activity of Cheongtaejeon tea which was produced by the inoculation of microbial strains. The external appearance of Cheongtaejeon teas were not significant among the teas which were produced with or without the inoculation of L. plantarum CHO 25 and the mixed microbial strains. The taste of the tea increased most in Cheongtaejeon tea which was produced without the inoculation of microbial strains. The taste and liking of Cheongtaejeon tea which was inoculated with Aspergillus oryzae and Aspergillus niger decreased significantly, and it was not suitable to drink. Total phenolics compound contents, total flavonoid contents and DPPH ($\alpha,\alpha$-diphenyl-$\beta$-picryl-hydrazyl) radical scavenging activity of Cheongtaejeon tea extracts increased much more in the order of that produced with the inoculation of L. plantarum CHO 25, control and that with the mixed microbial strains. However, nitrite radical scavenging activity in 1,000 mg/L Cheongtaejeon tea hot water extracts were in the order of the control (94.4%), the inoculation of L. plantarum CHO 25 (93.6%) and the mixed microbial strains (91.1%). Overall results indicated that the sensuous characteristics increased most in Cheongtaejeon tea which was produced without the inoculation of microbial strains, and those physiological activities in tea with the inoculation of L. plantarum CHO 25.

Effect of Co-inoculation of Two Bacteria on Phosphate Solubilization

  • Lee, Yu-Jin;Lee, Heon-Hwak;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.318-326
    • /
    • 2016
  • Two phosphate solubilizing bacteria, Pantoea rodasii PSB-11and Enterobacter aerogenes PSB-12, were isolated from button mushroom compost and employed to assess their synergistic effect in liquid medium and on growth of green gram plants by single and co-inoculation of the strains. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($521{\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of Pantoea strain ($485{\mu}g\;ml^{-1}$) and Enterobacter strain ($470{\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production and glucose consumption was observed in the E. aerogenes PSB-12 single inoculated culture medium rather than those of co-inoculation. According to the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 10.6% and 10.7% higher shoot and root growth respectively compared to the control. Therefore, in concluding, co-inoculation of the strains P. rodasii and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, being short assessment period of the present study, we recommend in engaging further works under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

Synergistic effect of co-inoculation with phosphate-solubilizing bacteria

  • Park, Jin-Hee;Lee, Heon-Hak;Han, Chang-Hoon;Yoo, Jeoung-Ah;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.401-414
    • /
    • 2016
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia anthina PSB-15 and Enterobacter aerogenes PSB-16, was assessed in liquid medium and green gram plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($519{\mu}g\;mL^{-1}$) into the medium, followed by single inoculation of Burkholderia strain ($492{\mu}g\;mL^{-1}$) and Enterobacter strain ($483{\mu}g\;mL^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production, and glucose consumption were observed in the culture medium co-inoculated with PSB-15 and PSB-16 strains rather than that of single inoculation. Based on the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 9% and 8% higher shoot and root growth, respectively, compared to the control. Therefore, in conclusion, co-inoculation of the strains B. anthina and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, considering the short assessment period of the present study, we recommend engaging in further work under field conditions in order to test the suitability of these strains as bio-inoculants.

Effects of Inoculation of Rhizomicrobial Strains on Plant Growth at the Early Germination Stage

  • Yoo, Jae Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.153-157
    • /
    • 2014
  • Plant-growth-promoting rhizobacteria can affect plant growth by various direct and indirect mechanisms. This study was conducted to determine the ability of some rhizobacterial strains to enhance the seed germination of Lactuca sativa (lettuce) and Raphanus sativus (radish). Seeds were inoculated using a spore suspension ($1{\times}10^7cfumL^{-1}$) and incubated in a growth chamber at $28^{\circ}C$ under dark conditions and 65% RH. Azotobacter chroococcum and LAP mix inoculation increased the plumule length of L. sativa by 1.3, 0.8, and 0.7 cm, respectively, in comparison to the uninoculated control. Pseudomonas putida showed an increase of only 0.6 cm in plumule length when compared to the control. Inoculation of A. chroococcum, P. putida, and LAP mix enhanced the seed germination rate of R. sativus, by 10, 5, and 30%, respectively, in comparison with the uninoculated seeds. The results demonstrated that the inoculation of seeds by select rhizobacterial strains showed remarkable enhancement to the radicle length of lettuce and radish seedlings.

Infection Structures on the Infected Leaves of Potato Pre-inoculated with Bacterial Strains and DL-3-amino Butyric Acid after Challenge Inoculation with Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • Infection structures were observed using a fluorescence microscope at the penetration sites on the leaves of potato plants pre-inoculated with the bacterial strains Pseudomonas putida TRL2-3, Micrococcus luteus TRK2-2, and Flexibacteraceae bacterium MRL412, which mediated an induced systemic resistance on potato plants against late blight disease caused by Phytophthora infestans. In order to compare the infection structures on the leaves expressing systemic acquired resistance, the leaves of potato plants pre-treated with DL-3-amino butyric acid (BABA) were also observed after challenge inoculation with the same pathogen. The infection structures were investigated. The total number of germination and appressorium formation of P. infestans were counted. Furthermore, the frequencies of fluorescent epidermal cells at the penetration sites, which indicate a defense response of plant cell, were estimated. There were no differences on the germination rates of the fungal cysts among the untreated control, BABA pre-treated, and bacterial strains pre-inoculated plants. However, appressorium formation was slightly decreased on the leaves of BABA pre-treated plants compared to those of untreated as well as bacterial strains pre-inoculated plants. Furthermore, the frequencies of fluorescent cells of BABA pre-treated and bacterial strains pre-inoculated were higher than that of untreated plants, indicating an active defense reaction of the host cells against the fungal attack. On the other hand, the pre-treatment with BABA caused a stronger fluorescent of epidermal cells at the penetration sites compared to the pre-inoculation with the bacterial strains. Interestingly, the frequency of fluorescent cells by BABA, however, was lower than that by the bacterial strains. Based on the results it is suggested that the infection structures showing resistance reaction on the leaves of potato plants were different between by pre-inoculation with bacterial strains and by pre-treatment with BABA against the late blight pathogen.

Synergistic Phosphate Solubilization by Burkholderia anthina and Aspergillus awamori

  • Walpola, Buddhi Charana;Jang, Hyo-Ju;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Single or co-inoculation of phosphate solubilizing bacterial and fungal strains (Burkholderia anthina and Aspergillus awamori respectively) was performed separately to assess their synergistic and antagonistic interactions and the potential to be used as bio-inoculants. Co-inoculation was found to release the highest content of soluble phosphorus (1253 ${\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of fungal strain (1214 ${\mu}g\;ml^{-1}$) and bacterial strain (997 ${\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of fungal strain and co-inoculation of fungal and bacterial strain in terms of the phosphorous release. The highest pH reduction, organic acid production and glucose consumption were observed in the sole A. awamori inoculated culture medium. According to the plant growth promotion bioassays, co-inoculation of the microbial strains resulted in 21% and 43% higher shoot and root growth of the mung bean seedlings respectively as compared to the respective controls. Therefore, co-inoculation of B. anthina and A. awamori showed better performance in stimulating plant growth than that in inoculation of each strain alone. However, assessment period of the present study being short, we recommend in engaging further experimentation under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Control of Diatrype stigma occurred on the bed-log of Shiitake by resistant Shiitake strains (표고골목 해균인 주홍꼬리버섯을 방제하기 위한 저항성 표고균주 선발)

  • Lee, Bong-Hun;Bak, Won-Chull;Ka, Kang-Hyeon;Yoon, Kab-Hee;Park, Hyun;Cha, Byeong-Jin
    • Journal of Mushroom
    • /
    • v.3 no.3
    • /
    • pp.109-114
    • /
    • 2005
  • Attempts were made to control Diatrype stigma occurred on the bed-log of shiitake by resistant shiitake strains. In selection test of resistant shiitake strains, 67 out of 77 strains tested were proved to be resistant to D. stigma. Among them, 13 strains including KFRI 5 were effective to inhibit the access of D. stigma, and 7 strains including KFRI 180 remarkably invaded the territory of D. stigma. Among 31 shiitake strains made by hybridization of resistant strains for D. stigma, 8 strains including KFRI 537 inhibited the access of D. stigma, and 4 strains including KFRI 545 invaded the territory of D. stigma. The effects of temperatures and inoculation orders to the resistance were confirmed in PDA plates and test tubes filled with sawdust of Quercus acutissima. Four kinds of temperature treatments as follows were tested: (1) continuous incubation at $14^{\circ}C$, (2) continuous incubation at $25^{\circ}C$, (3) changing of incubation temperature from $14^{\circ}C$ to $25^{\circ}C$ as soon as mycelia of both shiitake and D. stigma meet together, (4) changing of incubation temperature from $25^{\circ}C$ to $14^{\circ}C$ as soon as mycelia of both shiitake and D. stigma meet together. Three kinds of inoculation procedure were tested: (1) inoculation of shiitake 3 days ahead of D. stigma inoculation, (2) inoculation of D. stigma 3 days ahead of shiitake inoculation, (3) simultaneous inoculation of both fungi. In PDA plate test, the strain KFRI 137 showed outstanding ability to inhibit mycelial growth of D. stigma and the strain KFRI 180 invaded into the territory of D. stigma in most of treatments. Hybrid strains, KFRI 545, 546, and 547 were more resistant than their parent strains, KFRI 488 and 405. In test tube examinations, all the strains of shiitake showed high resistance at the treatment of change in temperature from $14^{\circ}C$ to $25^{\circ}C$ when mycelia of both shiitake and D. stigma meet together. On the other hand, resistance of all the strains growing at $25^{\circ}C$ decreased when the temperature was changed into $14^{\circ}C$ after mycelia of both fungi. In these cases, the resistance reached to 7~20% of the highest resistance. The strain KFRI 259 invaded the territory of D. stigma, contrary to PDA plate test. Among the strains, KFRI 393 strain was the most resistant under the continuous incubation at $25^{\circ}C$.

  • PDF

Effects of Seed Inoculation Methods on the Nodulation and the Growth of Alfalfa Seeding (근류균의 종자 접종방안의 차이가 근류형성 및 Alfalfa 유묘의 생장에 미치는 영향)

  • 이광회;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.192-197
    • /
    • 1981
  • Alfalfa (Medicago sativa L. cv. Luna) seeded in agar was inoculated with two strains of Rhizobium meliloti isolated from root nodules of alfalfa for assessment of nodulation. The seedling growth after six weeks was remarkably increased by adding each rhizobia strains into agar media and also by nitrate application (70ug N/ml), but there was no significant difference among them. Nodulations started one week after inoculation and increased its numbers and sizes as seedling grew. Therefore, the two strains isolated from alfalfa root were concluded to be effective strains. For determining seed inoculation method the same cultivar was inoculated with both rhizobia strains using different inoculation methods such as broth-vacuum, peat-adhesive, peat & lime pelleting. They were seeded in pots of river sand and supplied with culture solution excluded nitrogen. The peat & lime pelleting was recognized the best method in both of nodulation and seedling growth after eight weeks growth. There were significant correlations between the weight of nodules and the shoot or root dry weight of alfalfa in both rhizobia strains.

  • PDF

Comparison of Cultivation, Mushroom Yield, and Fruiting Body Characteristics of Lentinula edodes Strains according to the Inoculation Method

  • Jang, Yeongseon;Jeong, Yeun Sug;Ryoo, Rhim;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.525-530
    • /
    • 2021
  • The cultivation in sawdust media, mushroom productivity, and fruiting body characteristics of Lentinula edodes strains NIFoS 2778 and NIFoS 3363 were compared according to the inoculation conditions. The cultivation period was 5% shorter when liquid spawn was used. Fruiting bodies were induced after 113 days of incubation on media inoculated with liquid spawn, and the cultivation period was 119 days on media inoculated with solid spawn. Mushroom productivity of NIFoS 2778 was the highest (661.4 g) when 36 mL of liquid spawn was used. For NIFoS 3363, mushroom production was higher under liquid inoculation conditions when the same amount of liquid and solid spawns were used. The mushroom characteristics of the two strains were not significantly different, except for gill width and stipe diameter.