• Title/Summary/Keyword: strain sensitivity

Search Result 645, Processing Time 0.033 seconds

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials (나노구조재료의 소성변형 성질의 변형률속도 의존성)

  • Yoon Seung Chae;Kim Hyoung Seop
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Characterization of superplastic material SPF8090 Al-Li for the strain-rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성재료의 물성치 평가)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.89-93
    • /
    • 1997
  • A superlastic material, aluminum - lithium alloy 8090, were examined with uniaxial tensile test to investigate its thermomechanical behavior. The tests were carried out at the strain-rates ranging from 2${\times}$10-4 to 1${\times}$10-2 and at the temperatures from 48 0$^{\circ}C$ to 540$^{\circ}C$. The experiments produced force-displacement curves which converted to stress-strain curves. From the curves, several important superplastic factor such as strain-rate sensitivity, optimum strain-rate and strength coefficient were obtained.

  • PDF

Effect of Microstructure on the High Deformation Stability of Incoloy 825 Alloy (Incoloy 825 합금의 고온 변형 안정성에 미치는 미세조직의 영향)

  • Kang, Chang-Yong;Kim, Seong-Hwi;Park, Young-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.20-26
    • /
    • 2017
  • This study was carried out to investigate the effect of precipitate on the high temperature deformation stability of incoloy 825 alloy. $Cr_{23}C_6$ carbide was precipitated under $950^{\circ}C$, but was not detected over $1,000^{\circ}C$. Most of the precipitation consist of $Cr_{23}C_6$ carbide. Strain-rate sensitivity was the highest in 0.01/s and the lowest in 10/s. Strain-rate sensitivity was decreased sharply below $950^{\circ}C$. In the temperature between $850^{\circ}C{\sim}1,150^{\circ}C$, plastic instable area did not exist. It showed the lowest Ziegler Parameter value of 0.06 Ziegler Parameter was the lowest as 0.06 at $850^{\circ}C$ with 10s-1 of strain. The highest Ziegler Parameter value(0.43) was found in plastic deformation at $1,050^{\circ}C$ with 0.01s-1 of strain. It tends to have an higher resistance to the high temperature deformation under $950^{\circ}C$, due to the precipitation.

FBG Sensor Probes with Silver Epoxy for Tracing the Maximum Strain of Structures

  • Im, Jooeun;Kim, Mihyun;Choi, Ki-Sun;Hwang, Tae-Kyung;Kwon, Il-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.459-464
    • /
    • 2013
  • Structures can be evaluated their health status by allowable loading criteria. These criteria can be determined by the maximum strain. Therefore, in order to detect this maximum strain of structures, fiber optic Bragg grating(FBG) sensor probes are newly designed and fabricated to perform the memorizing detection even if the sensor system is on-and-off. The probe is constructed with an FBG optical fiber embedded in silver epoxy. When the load is applied and removed on the structure, the residual strain remains in the silver epoxy to memorize the maximum strain effect. In this study, a commercial Al-foil bonded FBG sensor probe was tested to investigate the detection feasibility at first. FBG sensor probes with silver epoxy were fabricated as three different sizes. The detection feasibility of maximum strain was studied by doing the tensile tests of CFRP specimens bonded with these FBG sensor probes. It was investigated the sensitivity coefficient defined as the maximum strain divided by the residual strain. The highest sensitivity was 0.078 of the thin probe having the thickness of 2 mm.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

Finite element analysis of axisymmetric extrusion with strain rate sensitive materials (속도의존성 재료에 대한 축대칭 전방압출의 유한요소 해석)

  • 최재찬;김병민;이종수;조남춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.537-543
    • /
    • 1991
  • In this study, the strain rate effects are considered in the formulation by introducing the constitutive equation of the strain rate sensitive materials and rigid-viscoplastic finite element program is developed for axisymmtric extrusion. The effect of strain rate sensitivity on the flow characteristics and forming pressure are investigated and the experiments are carried out for extrusion with pure lead specimens. The theoretically predicted forming pressure showed reasonably good agreement with the experimental values.

Determination of Flow Stress and Friction Factor by the Ring Compression Test (II) (링압축실험에 의한 유동응력 및 마찰인자의 결정 (II))

  • 최영민;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix

  • Moon, Gi-Seong;Narbad, Arjan
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.147-152
    • /
    • 2017
  • A bioluminescent Lactobacillus plantarum (pLuc2) strain was constructed. The luminescent signal started to increase during the early exponential phase and reached its maximum in the mid-exponential phase in a batch culture of the strain. The signal detection sensitivity of the strain was the highest in PBS (phosphate buffered saline), followed by milk and MRS broth, indicating that the sensitivity was influenced by the matrix effect. The strain was used in millet seed fermentation which has a complex matrix and native lactic acid bacteria (LAB). The luminescent signal was gradually increased until 9 h during fermentation and abolished at 24 h, indicating that the strain could be specifically tracked in the complex matrix and microflora. Therefore, the bioluminescent labeling system can be used for monitoring LAB in food and dairy sciences and industries.

Temperature Sensitivity of Sigma Background Is Suppressed by the Disruption of ScKNS1 in Saccharomyces cerevisiae (ScKns1 결손에 의한 Saccharomyces cerevisiae ${\Sigma}1278b$ 균주의 온도 민감성 억제 효과)

  • Park, Yun-Hee;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.167-169
    • /
    • 2011
  • The Saccharomyces cerevisiae S288c strain does not show haploid and diploid filamentous growth, and biofilm formation, because it has a flo8 nonsense mutation unlike ${\Sigma}1278b$ strain which has a FLO8 gene. During the heat stress experiments to investigate the role of ScKns1, LAMMER kinase in S. cerevisiae, we found that ${\Sigma}1278b$ strain revealed heat sensitivity at $37^{\circ}C$, a mild heat stress in contrast to S288c strain. We also found that the disruption of ScKns1 and the addition of sorbitol suppress heat sensitivity of ${\Sigma}1278b$ strain. These results suggest the possibility that Flo8 and ScKns1 may interact to transducer a signal for regulating heat stress through a novel signaling pathway.