Browse > Article
http://dx.doi.org/10.5851/kosfa.2017.37.1.147

Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix  

Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation)
Narbad, Arjan (Gut Health and Food Safety Programme, Institute of Food Research)
Publication Information
Food Science of Animal Resources / v.37, no.1, 2017 , pp. 147-152 More about this Journal
Abstract
A bioluminescent Lactobacillus plantarum (pLuc2) strain was constructed. The luminescent signal started to increase during the early exponential phase and reached its maximum in the mid-exponential phase in a batch culture of the strain. The signal detection sensitivity of the strain was the highest in PBS (phosphate buffered saline), followed by milk and MRS broth, indicating that the sensitivity was influenced by the matrix effect. The strain was used in millet seed fermentation which has a complex matrix and native lactic acid bacteria (LAB). The luminescent signal was gradually increased until 9 h during fermentation and abolished at 24 h, indicating that the strain could be specifically tracked in the complex matrix and microflora. Therefore, the bioluminescent labeling system can be used for monitoring LAB in food and dairy sciences and industries.
Keywords
bioluminescence; luciferase; monitoring; Lactobacillus plantarum; complex matrix;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ammor, M. S. and Mayo, B. (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76, 138-146.   DOI
2 Boyandin, A. N. and Popova, L. Y. (2003) Expression of luxgenes as an indicator of metabolic activity of cells in model ecosystem studies. Adv. Space Res. 31, 1839-1845.   DOI
3 Cronin, M., Sleator, R. D., Hill, C., Fitzgerald, G. F., and van Sinderen, D. (2008) Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol. 8, 161.   DOI
4 Daniel, C., Poiret, S., Dennin, V., Boutillier, D., Lacorre, D. A., Foligné, B., and Pot, B. (2015) Dual-color bioluminescence imaging for simultaneous monitoring of the intestinal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. Appl. Environ. Microbiol. 81, 5344-5349.   DOI
5 D'Argenio, V. and Salvatore, F. (2015) The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 451, 97-102.   DOI
6 de Vos, W. M. (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb. Cell Fact. 10, S2.   DOI
7 Eom, H. J., Park, J. M., Seo, M. J., Kim, M. D., and Han, N. S. (2008) Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35, 953-959.   DOI
8 Eom, J. E., Ahn, W. G., Her, S., and Moon, G. S. (2015) Construction of bioluminescent Lactobacillus casei CJNU 0588 for murine whole body imaging. Food Sci. Biotechnol. 24, 595-599.   DOI
9 Francis, K. P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M. J., Xiao Purchio, G. F., Caparon, M. G., Lipsitch, M., and Contag, P. R. (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect. Immun. 69, 3350-3358.   DOI
10 Galland, L. (2014) The gut microbiome and the brain. J. Med. Food 17, 1261-1272.   DOI
11 Gory, L., Montel, M. C., and Zagorec, M. (2001) Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol. Lett. 194, 127-133.   DOI
12 Ninomiya, K., Yamada, R., Matsumoto, M., Fukiya, S., Katayama, T., Ogino, C., and Shimizu, N. A. (2013) Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations. J. Biosci. Bioeng. 115, 196-199.   DOI
13 Higashikawa, F., Noda, M., Awaya, T., Nomura, K., Oku, H., and Sugiyama, M. (2010) Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition 26, 367-374.   DOI
14 Karimi, S., Ahl, D., Vagesjo, E., Holm, L., Phillipson, M., Jonsson, H., and Roos, S. (2016) In vivo and in vitro detection of luminescent and fluorescent Lactobacillus reuteri and application of red fluorescent Cherry for assessing plasmid persistence. PLoS One 11, e0151969.   DOI
15 Katz, J. A. (2006) Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J. Clin. Gastroenterol. 40, 249-255.   DOI
16 Moon, G. S., Lee, Y. D., and Kim, W. J. (2008) Screening of a novel lactobacilli replicon from plasmids of Lactobacillus reuteri KCTC 3678. Food Sci. Biotechnol. 17, 438-441.
17 Morelli, L. (2014) Yogurt, living cultures, and gut health. Am. J. Clin. Nutr. 99, 1248S-1250S.   DOI
18 Riaz Rajoka, M. S., Shi, J., Zhu, J., Shao, D., Huang, Q., Yang, H., and Jin, M. (2017) Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl. Microbiol. Biotechnol. 101, 35-45.   DOI
19 Oguntoyinbo, F. A. and Narbad, A. (2012) Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiol. 31, 254-262.   DOI
20 Phumkhachorn, P., Rattanachaikunsopon, P., and Khunsook, S. (2007) Use of the gfp gene in monitoring bacteriocin-producing Lactobacillus plantarum N014, a potential starter culture in ham fermentation. J. Food Prot. 70, 419-424.   DOI
21 Sanz, Y., Nadal, I., and Sánchez, E. (2007) Probiotics as drugs against human gastrointestinal infections. Recent Pat. Antiinfect. Drug Discov. 2, 148-156.   DOI
22 Yu, Q. H., Dong, S. M., Zhu, W. Y., and Yang, Q. (2007) Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiol. Lett. 275, 207-213.   DOI
23 Tsai, Y. T., Cheng, P. C., and Pan, T. M. (2012) The immuno-modulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 96, 853-862.   DOI
24 Tsai, Y. T., Cheng, P. C., and Pan, T. M. (2014) Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl. Microbiol. Biotechnol. 98, 1-10.   DOI
25 van de Guchte, M., van der Vossen, J. M., Kok, J., and Venema, G. (1989) Construction of a lactococcal expression vector: Expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55, 224-228.