Browse > Article

Temperature Sensitivity of Sigma Background Is Suppressed by the Disruption of ScKNS1 in Saccharomyces cerevisiae  

Park, Yun-Hee (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University)
Park, Hee-Moon (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University)
Publication Information
Korean Journal of Microbiology / v.47, no.2, 2011 , pp. 167-169 More about this Journal
Abstract
The Saccharomyces cerevisiae S288c strain does not show haploid and diploid filamentous growth, and biofilm formation, because it has a flo8 nonsense mutation unlike ${\Sigma}1278b$ strain which has a FLO8 gene. During the heat stress experiments to investigate the role of ScKns1, LAMMER kinase in S. cerevisiae, we found that ${\Sigma}1278b$ strain revealed heat sensitivity at $37^{\circ}C$, a mild heat stress in contrast to S288c strain. We also found that the disruption of ScKns1 and the addition of sorbitol suppress heat sensitivity of ${\Sigma}1278b$ strain. These results suggest the possibility that Flo8 and ScKns1 may interact to transducer a signal for regulating heat stress through a novel signaling pathway.
Keywords
FLO8; Saccharomyces cerevisiae; ScKNS1; ${\Sigma}1278b$; temperature sensitivity;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Park, Y.D., W.H. Kang, W.S. Yang, K.S. Shin, K.S. Bae, and H.M. Park. 2003. LAMMER kinase homolog, Lkh1, is involved in oxidative-stress response of fission yeast. Biochem. Biophys. Res. Commun. 311, 1078-1083.   DOI   ScienceOn
2 Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, G. Jona, A. Breitkreutz, R. Sopko, and et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438, 679-684.   DOI   ScienceOn
3 Rupp, S., E. Summers, H.J. Lo, H. Madhani, and G. Fink. 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 1257-1269.   DOI
4 Trott, A. and K.A. Morano. 2003. The yeast response to heat shock, pp. 71-119. In S.H.a.W.H. Mager (ed.), Yeast Stress Response, Springer.
5 Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300-372.   DOI   ScienceOn
6 de Nadal, E. and F. Posas. 2009. Multilayered control of gene expression by stress-activated protein kinases. EMBO J. 29, 4-13.
7 Dowell, R.D., O. Ryan, A. Jansen, D. Cheung, S. Agarwala, T. Danford, D.A. Bernstein, P.A. Rolfe, L.E. Heosler, B. Chin, and et al. 2010. Genotype to phenotype: a complex problem. Science 328, 469.   DOI
8 Gimeno, C.J., P.O. Ljungdahl, C.A. Styles, and G.R. Fink. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090.   DOI   ScienceOn
9 Kang, W.H., Y.D. Park, J.S. Hwang, and H.M. Park. 2007. RNA-binding protein Csx1 is phosphorylated by LAMMER kinase, Lkh1, in response to oxidative stress in Schizosaccharomyces pombe. FEBS Lett. 581, 3473-3478.   DOI   ScienceOn
10 Kang, W.H., Y.H. Park, and H.M. Park. 2010. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J. Biol. Chem. 285, 13797-13806.   DOI
11 Kim, K.H., Y.M. Cho, W.H. Kang, J.H. Kim, K.H. Byun, Y.D. Park, K.S. Bae, and H.M. Park. 2001. Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochem. Biophys. Res. Commun. 289, 1237-1242.   DOI   ScienceOn
12 Liu, H., C.A. Styles, and G.R. Fink. 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967-978.
13 Lorenz, M.C., N.S. Cutler, and J. Heitman. 2000. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell. 11, 183-199.   DOI
14 Padmanabha, R., S. Gehrung, and M. Snyder. 1991. The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol. Gen. Genet. 229, 1-9.