• 제목/요약/키워드: strain compatibility

검색결과 142건 처리시간 0.022초

Trans-octylene rubber(TOR)의 첨가가 NBR/EPDM 고무블렌드의 물성에 미치는 영향 (Effect of trans-octylene rubber(TOR) on the properties of NBR/EPDM rubber blends)

  • 신영식;장영욱
    • Elastomers and Composites
    • /
    • 제35권2호
    • /
    • pp.149-156
    • /
    • 2000
  • trans-octylene rubber(TOR)를 비상용성 블렌드인 NBR/EPDM(70/30)에 첨가하고, 이에 따른 혼합 특성 모폴로지 및 물성의 변화에 관하여 조사하였다. TOR이 첨가됨으로써 블렌드 시 혼합에너지가 감소하였고, 혼합 시 수반되는 온도상승도 저하됨을 볼 수 있었다. 블렌드의 모폴로지를 SEM으로 관찰한 결과, EPDM이 NBR 매트릭스에 분산된 형태인 것을 알았으며, TOR의 첨가에 의해 분산상인 EPDM상이 균일하고 미세해지는 것이 관찰되었다. TOR이 첨가됨으로써 NBR/EPDM의 인장강도, 파단신율 및 모듈러스 둥의 인장물성이 향상되었다. 오존저항성은 임계 응력-변형관계로부터 정량적으로 평가하였으며, TOR이 첨가된 블렌드에서 오존크랙을 일으키는 임계에너지값이 증가됨을 알 수 있었다. TOR의 첨가로 인한 NBR/EPDM 블렌드의 물성 향상은 모폴로지의 미세화와 사슬얽힘으로 인한 가교밀도의 변화 때문인 것으로 판단된다.

  • PDF

CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가 (Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates)

  • 조효남;최영민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

비부착 긴장재의 응력을 평가하기 위해 제안된 설계식의 타당성검증 (Verification of Proposed Design Equation for Stress Evaluation of Unbonded Tendons)

  • 임재형;문정호;이리형
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.127-137
    • /
    • 1999
  • 본 연구와 관련한 이전의 연구에서는 본 연구자들이 제안한 설계식의 타당성을 검증하기 위하여 선정된 변수별로 실험체를 제작하여 실험을 실시하였고 실험결과를 분석하였다. 본 연구에서는 실험결과에 대하여 본 연구자들이 제안한 설계식과 기존의 설계식들에 의한 해석결과를 비교분석하여 본 연구자들의 설계식의 타당성을 검증하였다. 사용된 기존의 설계식은 현행의 ACI 규준식, AASHTO LRFO 규준시, 변형도 적합조건에 의한 해석식, Harajli/Kanj의 설계식, Chakrabarti의 설계식 등이다. 비교${\cdot}$분석결과에 의하면 본 연구자득이 제안한 설계식이 비부착 긴장재의 응력을 평가하는데 보다 적절한 방법임을 증명하였다.

편심재하된 하이브리드 FRP-콘크리트 합성 기둥의 구조적 특성 (The Structrual Behavior of Eccentrically Loaded Hybrid FRP-Concrete Composite Columns)

  • 최진우;서수홍;박준석;주형중;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제4권4호
    • /
    • pp.1-8
    • /
    • 2013
  • Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Flexural strength of circular concrete-filled tubes

  • Lee, Minsun;Kang, Thomas H.-K.
    • Advances in Computational Design
    • /
    • 제1권4호
    • /
    • pp.297-313
    • /
    • 2016
  • The flexural strength of circular concrete-filled tubes (CCFT) can be estimated by several codes such as ACI, AISC, and Eurocode 4. In AISC and Eurocode, two methods are recommended, which are the strain compatibility method (SCM) and the plastic stress distribution method (PSDM). The SCM of AISC is almost the same as the SCM of the ACI method, while the SCM of Eurocode is similar to the ACI method. Only the assumption of the compressive stress of concrete is different. The PSDM of Eurocode approach is also similar to the PSDM of AISC, but they have different definitions of material strength. The PSDM of AISC is relatively easier to use, because AISC provides closed-form equations for calculating the flexural strength. However, due to the complexity of calculation of circular shapes, it is quite difficult to determine the flexural strength of CCFT following other methods. Furthermore, all these methods give different estimations. In this study, an effort is made to review and compare the codes to identify their differences. The study also develops a computing program for the flexural strength of circular concrete filled tubes under pure bending that is in accordance with the codes. Finally, the developed computing algorithm, which is programmed in MATLAB, is used to generate design aid graphs for various steel grades and a variety of strengths of steel and concrete. These design aid graphs for CCFT beams can be used as a preliminary design tool.

식재기반을 담는 RDT 거더교의 구조성능 검증 (Structural Performance Verification of RDT Girder Bridge Feasible to Fill with Planting Ground)

  • 하태열;한종욱;양인욱
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2219-2228
    • /
    • 2015
  • RDT(Reversed Double T) 거더교는 생태교 맞춤형으로 개발된 PSC 교량 형식이다. 모음 ㅛ형상과 유사한 단면형상이 가장 큰 특징이며 거더 내부 공간에 흙을 담을 수 있어 상부 구조 전체 높이를 획기적으로 낮추고 시공성과 경제성이 우수하여 생태교로써 적용이 활발할 것으로 기대되는 공법이다. 새로 제안된 RDT 거더교의 실적용을 위해서는 공용 중 안전성 검증이 필요하다. 본 연구에서는 RDT 거더교의 실물모형 실험체를 설계 및 제작하여 정적재하 실험을 수행하였다. 실험결과와 변형률적합법을 이용한 비선형 해석 결과를 바탕으로 거동을 평가하고 구조성능을 검토하였다. 검토 결과, RDT 거더교는 사용하중의 2배 이상 균열 안전성을 확보하고 있으며 우수한 휨 성능을 보유하고 있는 것으로 나타났다.

장스팬이 가능한 친환경 공동주택용 철골 프리캐스트 합성보 개발 (Development of Long-Span Steel-Precast Composite Beam for Green Apartment Building)

  • 윤태호;홍원기;박선치;윤대영
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2011
  • Currently, the multi-residential apartments used in Korea are mostly bearing wall apartments which don't satisfy consumers for the lack of architectural plan flexibility. And due to remodelling-incompatible, bearing wall apartments have to be reconstructed. It is, thus, necessary to develop multi-residential apartments utilizing composite beam that can replace the conventional bearing wall-type apartment buildings. Composite beams proposed in this paper ensure modification of space and quality control, while the floor heights are maintained at the same floor height as in bearing wall structures. This study analyzes the experimental behavior of composite beams with proper combination of structural steel, reinforced concrete, and precast concrete. By comparing with the theoretical analysis and experimental results, the accuracy of flexural moment capacity and neutral axis was evaluated. The experiments were performed by two simply-supported specimens using loading and unloading. When the analysis results were compared with the experimental results, the flexural moment capacity of the composite beam was shown with an error of approximately -0.5 to 0.1% at the maximum load limit state.

Simulation of concrete shrinkage taking into account aggregate restraint

  • Tangtermsirikul, Somnuk;Nimityongskul, Pichai
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.105-113
    • /
    • 1997
  • This paper proposes a model for simulating concrete shrinkage taking into account aggregate restraint. In the model, concrete is regarded as a two-phase material based on shrinkage property. One is paste phase which undergoes shrinkage. Another is aggregate phase which is much more volumetrically stable. In the concrete, the aggregate phase is considered to restrain the paste shrinkage by particle interaction. Strain compatibility was derived under the assumption that there is no relative macroscopic displacement between both phases. Stresses on both phases were derived based on the shrinking stress of the paste phase and the resisting stress of the aggregate phase. Constitutive relation of paste phase was adopted from the study of Yomeyama, K. et al., and that of the aggregate phase was adopted from the author's particle contact density model. The equation for calculating concrete shrinkage considering aggregate restraint was derived from the equilibrium of the two phases. The concrete shrinkage was found to be affected by the free shrinkage of the paste phase, aggregate content and the stiffness of both phases. The model was then verified to be effective for simulating concrete shrinkage by comparing the predicted results with the autogeneous and drying shrinkage test results on mortar and concrete specimens.

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.