• Title/Summary/Keyword: straight line detection

Search Result 76, Processing Time 0.022 seconds

Straight Line Detection Using PCA and Hough Transform (주성분 분석과 허프 변환을 이용한 직선 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.227-232
    • /
    • 2018
  • In a Hough transform that is a representative algorithm for the straight line detection, a great number of edge pixels generated from noisy or complex images cause enormous amount of computation and pseudo straight lines. This paper proposes a two step straight line detection algorithm to improve the conventional Hough transform. In the first step, the proposed algorithm divides an image into non-overlapping blocks and detects the information related to the straight line of the edge pixels in the block using a principal component analysis (PCA). In the second step, it detects the straight lines by performing the Hough transform limited slope area to the pixels associated with the straight line. Simulation results show that the proposed algorithm reduces average of ${\rho}$ computation by 94.6% and prevents the pseudo straight lines although some additional computation is needed.

Analysis of Straight Line Detection Using PCA (주성분 분석을 이용한 직선 검출에 대한 분석)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2161-2166
    • /
    • 2015
  • This paper analyzes the straight line detection using the principal component analysis (PCA) and proposes its improved algorithm to which two new functions are added. The first function removes invalid pixels through the detected straight line and detects a line again. The second function detects lines from non-overlapped blocks, selects valid line candidates, and detects a valid line from pixels adjacent to each line candidate. The proposed algorithm detects a more accurate straight line with a low computation in comparison with the conventional algorithm in an image with somewhat refined lines.

Hough Transform Using Straight Line Information of Edge Pixels (에지 화소들의 직선 정보를 이용한 허프변환)

  • Kim, Jin-tae;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.674-677
    • /
    • 2017
  • The Hough transform is the most representative algorithm for a straight line detection based on edge pixels. It shows excellent performance in a simple linear image but requires a considerable amount of computation in a noisy or complex image and has a problem of detecting a pseudo straight line easily. In this paper, we propose a straight line detection algorithm to solve the problem of the conventional Hough transform. The proposed algorithm detects the straight line information of edge pixels by using principal component analysis (PCA) before performing Hough transform and performs the Hough transform of the limited slope area in the valid edge pixels based on the detected straight line information of edge pixels. Simulation results show that the proposed algorithm reduces the amount of computation as well as eliminates pseudo straight lines.

  • PDF

Effective Line Detection of Steel Plates Using Eigenvalue Analysis (고유값 분석을 이용한 효과적인 후판의 직선 검출)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1479-1486
    • /
    • 2011
  • In this paper, a simple and robust algorithm is proposed for detecting straight line segments in a steel plate image. Line detection from a steel plate image is a fundamental task for analyzing and understanding of the image. The proposed algorithm is based on small eigenvalue analysis. The proposed approach scans an input edge image from the top left comer to the bottom right comer with a moving mask. A covariance matrix of a set of edge pixels over a connected region within the mask is determined and then the statistical and geometrical properties of the small eigenvalue of the matrix are explored for the purpose of straight line detection. Before calculating the eigenvalue, each line segment is separated from the edge image where several line segments are overlapped to increase the accuracy of the line detection. Additionally, unnecessary line segments are eliminated by the number of pixels and the directional information of the detected line edges. The respects of the experiments emphasize that the proposed algorithm outperforms the existing algorithm which uses small eigenvalue analysis.

The horizontal line detection method using Haar-like features and linear regression in infrared images

  • Park, Byoung Sun;Kim, Jae Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.29-36
    • /
    • 2015
  • In this paper, we propose the horizontal line detection using the Haar-like features and linear regression in infrared images. In the marine environment horizon image is very useful information on a variety of systems. In the proposed method Haar-like features it was noted that the standard deviation be calculated in real time on a static area. Based on the pixel position, calculating the standard deviation of the around area in real time and, if the reaction is to filter out the largest pixel can get the energy map of the area containing the straight horizontal line. In order to select a horizontal line of pixels from the energy map, we applied the linear regression, calculating a linear fit to the transverse horizontal line across the image to select the candidate optimal horizontal. The proposed method was carried out in a horizontal line detecting real infrared image experiment for day and night, it was confirmed the excellent detection results than the legacy methods.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

Line Segment Detection Algorithm Using Improved PPHT (개선된 PPHT를 이용한 선분 인식 알고리즘)

  • Lee, Chanho;Moon, Ji-hyun;Nguyen, Duy Phuong
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • The detection rate of Progressive Probability Hough Transform(PPHT) is decreased when a lot of noise components exist due to an unclear or complex original image although it is quite a good algorithm that detects line segments accurately. In order to solve the problem, we propose an improved line detecting algorithm which is robust to noise components and recovers slightly damaged edges. The proposed algorithm is based on PPHT and traces a line segments by pixel and checks of it is straight. It increases the detection rate by reducing the effect of noise components and by recovering edge patterns within a limited pixel size. The proposed algorithm is applied to a lane detection method and the false positive detection rate is decreased by 30% and the line detection rate is increased by 15%.

Edge Pattern Classification Method for Efficient Line Detection (효율적인 직선 검출을 위한 에지 패턴 분류 방법)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.918-920
    • /
    • 2011
  • In this paper, a simple edge pattern classification method is proposed for detecting straight line segments in an image corrupted by impulse noise. Corrupted images have complicated edge patterns. To detect straight line from an complicated edge pattern, it is needed to simplify the entire edge. The proposed algorithm separates the entire edge into 4 directional partial edge patterns. Each line segment is separated from the partial edge image where several line segments are overlapped, and then the straight line is detected. The results of the experiments emphasize that the proposed algorithm is simple but accurate.

  • PDF

A Method for Quantitative Performance Evaluation of Edge Detection Algorithms Depending on Chosen Parameters that Influence the Performance of Edge Detection (경계선 검출 성능에 영향을 주는 변수 변화에 따른 경계선 검출 알고리듬 성능의 정량적인 평가 방법)

  • 양희성;김유호;한정현;이은석;이준호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.993-1001
    • /
    • 2000
  • This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.

  • PDF

A Self-Organizing Map Based Hough Transform for Detecting Straight Lines (직선 추출을 위한 자기조직화지도 기반의 허프 변환)

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.162-170
    • /
    • 2002
  • Detecting straight lines in an image is frequently required for various machine vision applications such as restoring CAD drawings from scanned images and object recognition. The standard Hough transform has been dominantly used to that purpose. However, massive storage requirement and low precision in estimating line parameters due to the quantization of parameter space are the major drawbacks of the Hough transform technique. In this paper, to overcome the drawbacks, an iterative algorithm based on a self-organizing map is presented. The self-organizing map can be adaptively learned such that image points are clustered by prominent lines. Through the procedure of the algorithm, a set of lines are sequentially detected one at a time. The algorithm can produce highly precised estimates of line parameters using very small amount of storage memory. Computational results for synthetically generated images are given. The promise of the algorithm is also demonstrated with its application to two natural images of inserts.