• 제목/요약/키워드: story model

검색결과 803건 처리시간 0.027초

고강도 콘크리트를 사용한 R/C 평면골조의 동적응답해석 (Dynamic Response Analysis of R/C Frame Structures Using High-Strength Concrete)

  • 장극관;황정현;방세용
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.278-286
    • /
    • 2001
  • The purpose of this paper is to suggest an analytical technique for time history analysis of R/C frame structure using high-strength concrete under seismic loading. Current researches in hysteretic model of structral elements using high-strength concrete are not enough. It is the cause of error that apply hysteretic model of element using normal-strength concrete to the inelastic analysis of high-strength concrete R/C frame structures. In this paper time history analysis using IDARC and DRAIN programs was performed for a 2-bay, 20-story R/C frame structures. Particularly nonlinear dynamic analysis was performed by IDARC program that was applied hysteretic model of structural element using high-strength concrete. centro earthquake 1940 NS waves was used in the analysis and its peak ground accelerations are changed to be 0.12g, 0.25g

  • PDF

Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames

  • Zahrai, Seyed Mehdi;Jalali, Meysam
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.1-21
    • /
    • 2014
  • Knee Braced Frame (KBF) is a special form of ductile eccentrically braced frame having a diagonal brace connected to a knee element, as a hysteretic damper, instead of beam-column joint. This paper first presents an experimental investigation on cyclic performance of two knee braced single span one-story frame specimens. The general test arrangement, specimen details, and most relevant results (failure modes and hysteretic curves) are explained. Some indexes to assess the seismic performance of KBFs, including ductility; response reduction factor and energy dissipation capabilities are also subsequently discussed. Experimental results indicate that the maximum equivalent damping ratios achieved by test frames are 21.8 and 23% for the specimens, prior to failure. Finally, a simplified analytical model is derived to predict the bilinear behavior of the KBFs. Acceptable conformity between analytical and experimental results proves the accuracy of the proposed model.

축소 건물모델의 모달 파라미터 추정에 관한 연구 (A Study on the Modal Parameters of the scaled building structure)

  • 박해동;박진일;최현;김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.571-575
    • /
    • 2000
  • The physical properties of the spatial model, mass, stiffness and damping matrix, can be defined by a specific natural frequency, damping ratio and mode shape. These modal parameters can be determined from a set of frequency response function(FRF) measured by exciting the structure and measuring the responses at various points around the structure. In this paper, The Transfer Matrix is obtained by experimental modal analysis for the 3-story scaled building model which TMD is installed on top and the physical properties of the spatial model is determined using the residue matrix and the location of poles from FRF measurement using polynomial curve fitting methods.

  • PDF

The Lightning Current Parameters that Impact on the Surge Analysis of the EHV Gas Insulated Substation by EMTP

  • Shim Eung-Bo;Han Sang-Ok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권1호
    • /
    • pp.1-7
    • /
    • 2005
  • This paper describes the lightning surge analysis model of extra high voltage GIS using EMTP. Various lightning current parameters were investigated in order to confirm the impact on the lightning surge analysis such as lightning current amplitude, waveform, size of GIS, tower footing resistance and surge arresters. The multi-story tower model and EMTP/TACS model were introduced for the simulation of dynamic arc characteristics. The margin between the maximum overvoltage and BIL of the GIS was about 10 percent and the margin between the maximum overvoltage and BIL of the transformer was 21 percent.

Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates

  • Nasab, Mohammad Seddiq Eskandari;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, a series of cyclic loading tests were performed on viscoelastic dampers (VED) composed of viscoelastic polymer composite material and thin steel plates to observe the variation of the mechanical properties under different loading conditions. A mathematical model was developed based on the Kelvin-Voigt and Bouc-Wen models to formulate the nonlinear force-displacement relationship of the viscoelastic damper. The accuracy of the proposed mathematical model was verified using the data obtained from the tests. The mathematical model was applied to analyze a reinforced concrete framed structure retrofitted with viscoelastic dampers. Nonlinear dynamic analysis results showed that the average maximum inter-story drift ratios of the retrofitted structure met the target limit state after installing the VED. In addition, both the maximum and residual displacements were significantly reduced after the installation of the VED.

바닥판의 휨강성이 고층건물의 지진거동에 미치는 영향 (The Effect of the flexural stiffness of Floor Slabs on The Seismic Response of Multi-story Building Structures)

  • 김현수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.170-177
    • /
    • 2000
  • Recently many high-rise apartment buildings are constructed using the box system which is composed only of concrete walls and slabs. Commercial softwares such as ETABS used for the analysis of high-rise apartment buildings are employing the rigid diaphragm assumption for simplicity in the analysis procedure. In general the flexural stiffness of floor slabs are ignored in the analysis, This assumption may be reasonable for the estimation of seismic response of framed structures. But in the case of the box system used in the apartment buildings floor slabs has major effects on the lateral stiffness of the structure. So if the flexural stiffness of slabs in the box system is ignored the lateral stiffness may be significantly underestimated, For these reasons it is recommended to use plate elements to represent the floor slabs. In the study A typical frame structure and a box system structure are chosen as the example structure. When a 20 story frame structure is subjected to the static lateral loads the displacements of the roof are 15.33cm and 17.52cm for the cases with and without the flexural stiffness of the floor slabs. And in case of box system the roof displacement was reduced from 16.18cm to 8.61cm The model without the flexural stiffness of floor slabs turned out to elongate the natural periods of vibration accordingly.

  • PDF

Application of simple adaptive control to an MR damper-based control system for seismically excited nonlinear buildings

  • Javanbakht, Majd;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1251-1267
    • /
    • 2016
  • In this paper, Simple Adaptive Control (SAC) is used to enhance the seismic response of nonlinear tall buildings based on acceleration feedback. Semi-active MR dampers are employed as control actuator due to their reliability and well-known dynamic models. Acceleration feedback is used because of availability, cost-efficiency and reliable measurements of acceleration sensors. However, using acceleration feedback in the control loop causes the structure not to apparently meet some requirements of the SAC algorithm. In addition to defining an appropriate SAC reference model and using inherently stable MR dampers, a modification in the original structure of the SAC is proposed in order to improve its adaptability to the situation in which the plant does not satisfy the algorithm's stability requirements. To investigate the performance of the developed control system, a numerical study is conducted on the benchmark 20-story nonlinear building and the responses of the SAC-controlled structure are compared to an $H_2/LQG$ clipped-optimal controller under the effect of different seismic excitations. As indicated by the results, SAC controller effectively reduces the story drifts and hence the seismically-induced damage throughout the structural members despite its simplicity, independence of structural parameters and while using fewer number of dampers in contrast with the $H_2/LQG$ clipped-optimal controller.

풍하중 구현 및 내풍특성 평가를 위한 선형질량 가진시스템 설계 (Design of a Linear Mass Excitation System for Simulating Wind-induced Responses of a Building Structure)

  • 박은천;이상현;민경원;강경수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.661-668
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

ATMD를 이용한 건축 구조물의 풍응답 구현을 위한 가진시스템 (Excitation System for Simulating Wind-induced Responses of a Building Structure using an Active Tuned Mass Damper)

  • 박은천;이상현;민경원;강경수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.210-215
    • /
    • 2007
  • In this paper, excitation systems using an active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.