Browse > Article
http://dx.doi.org/10.12989/eas.2020.18.2.171

Mitigation of seismic collision between adjacent structures using roof water tanks  

Mahmoud, Sayed (Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University)
Publication Information
Earthquakes and Structures / v.18, no.2, 2020 , pp. 171-184 More about this Journal
Abstract
The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.
Keywords
pounding; seismic gap; sloshing force; inelastic response; earthquake;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Abdeddaim, M., Ounis, A. and Djedoui, N. (2016), "Pounding hazard mitigation between adjacent planar buildings using coupling strategy", J. Civil Struct. Hlth. Monit., 6(3), 603-617. https://doi.org/10.1007/s13349-016-0177-4.   DOI
2 Abdel Mooty, M.N. and Ahmed, N.A, (2017), "Pounding mitigation in buildings using localized interconnections", The 2017 World Congress on Advances in Structural Engineering and Mechanics - AEM17 Seoul, Korea.
3 Abdel Raheem, S.E, Fooly, M.Y.M., AbdelShafy, A.G.A., Abbas, Y.A., Omar, M., Taha, A.M. and AbdelLatif, M.M.S. (2019a), "Numerical simulation of potential seismic pounding among adjacent buildings in series", Bull. Earthq. Eng., 17(1), 439-471.   DOI
4 Abdel Raheem, S.E. (2014), "Mitigation measures for earthquake induced pounding effects on seismic performance of adjacent buildings", Bull. Earthq. Eng., 12(4), 1705-1724.   DOI
5 Abdel Raheem, S.E., Ahmed, M.M.M., Ahmed, M.M. and Abdel-Shafy, A.G.A. (2018a), "Evaluation of plan configuration irregularity effects on seismic response demands of L-shaped MRF buildings", Bull. Earthq. Eng., 16(9), 3845-3869.   DOI
6 Abdel Raheem, S.E., Fooly, M.Y.M., AbdelShafy, A.G.A., Abbas, Y.A., Omar, M., Taha, A.M., AbdelLatif, M.M.S. and Mahmoud, S. (2018b), "Seismic pounding effects on adjacent buildings in series with different alignment configurations", Steel Compos. Struct., 28(3), 289-308.   DOI
7 GRM (2009), M6.3 L'Aquila, Italy, Earthquake Field Investigation Report, Global Risk Miyamoto, Sacramento, California, USA.
8 Guenidi, M.Z., Abdeddaima, M., Ounisa, A., Shrimali, M.K. and Datta, T.K. (2017), "Control of adjacent buildings using shared tuned mass damper", Procedia Eng., 199, 1568-1573.   DOI
9 Jankowski, R. (2005), "Non-linear viscoelastic modelling of earthquake-induced structural pounding", Earthq. Eng. Struct. Dyn., 34, 595-611.   DOI
10 Jankowski, R. (2007), "Theoretical and experimental assessment of parameters for the non-linear viscoelastic model of structural pounding", J. Theo. Appl. Mech., 45(4), 931-942.
11 Jankowski, R. (2008), "Earthquake-induced pounding between equal height buildings with substantially different dynamic properties", Eng. Struct., 30, 2818-2829. https://doi.org/10.1016/j.engstruct.2008.03.006.   DOI
12 Jankowski, R. and Mahmoud, S. (2016), "Linking of adjacent three-storey buildings for mitigation of structural pounding during earthquakes", Bull. Earthq. Eng., 14(11), 3075-3097.   DOI
13 Karayannis, C.G. and Favvata, M.J. (2005a), "Inter-story pounding between multistory reinforced concrete structures", Struct. Eng. Mech., 20(5), 505-526.   DOI
14 Anagnostopoulos, S. and Spiliopoulos, K. (1992), "An investigation of earthquake induced pounding between adjacent buildings", Earthq. Eng. Struct. Dyn., 21, 289-302.   DOI
15 Moustafa, A. and Mahmoud, S. (2014), "Damage assessment of adjacent buildings under earthquake loads", Eng. Struct., 61, 153-165.   DOI
16 Reed, D.A., Yu, J., Yeh, H. and Gardarsson, S. (1998), "Investigation of tuned liquid dampers under large amplitude excitation", J. Eng. Mech., 124(4), 405-413.   DOI
17 Rosenblueth, E. and Meli, R. (1986), "The 1985 Earthquake: causes and effects in Mexico City", Concrete Int., ACI, 5(8), 23-36.
18 Abdel Raheem, S.E., Fooly, Y.M.F., Omar, M. and Abdel Zaher, A.K. (2019b), "Seismic pounding effects on the adjacent buildings with eccentric alignment", Earthq. Struct., 16(6), 715-726.   DOI
19 Abdullah, M., Hanif, J.H., Richardson, A. and Sobanjo, J. (2001), "Use of a shared tuned mass damper (STMD) to reduce vibration and pounding in adjacent structures", Earthq. Eng. Struct. Dyn., 30(8), 1185-1201.   DOI
20 Anagnostopoulos, S.A. (1988), "Pounding of buildings in series during earthquakes", Earthq. Eng. Struct. Dyn., 16(3), 443-456.   DOI
21 Anagnostopoulos, S.A. and Karamaneas, C.E. (2008), "Use of collision shear walls to minimize seismic separation and to protect adjacent buildings from collapse due to earthquake-induced pounding", Earthq. Eng. Struct. Dyn., 37, 1371-1388.   DOI
22 Cao, L. and Li C. (2019), "Tuned tandem mass dampers-inerters with broadband high effectiveness for structures under white noise base excitations", Struct. Control Hlth. Monit., 26(3), e2319. https://doi.org/10.1002/stc.2319.   DOI
23 Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7(5), 693-705.   DOI
24 Elwardany, H., Seleemah, A. and Jankowski, R. (2017), "Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels", Eng. Struct., 144(1), 1201-1217.
25 Komodromos P, Polycarpou PC, Papaloizou L and Phocas MC. (2007), "Response of seismically isolated buildings considering poundings", Earthq. Eng. Struct. Dyn., 36, 1605-1622.   DOI
26 Karayannis, C.G. and Favvata, M.J. (2005b), "Earthquake-induced interaction between adjacent reinforced concrete structures with non-equal heights", Earthq. Eng. Struct. Dyn., 34, 1-20.   DOI
27 Karayannis, C.G. and Naoum, M.C. (2018), "Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction", Eng. Struct., 163, 93-111.   DOI
28 Kasai, K. and Maison, B.F. (1997), "Building pounding damage during the 1989 Loma Prieta Earthquake", Eng. Struct., 3(19), 195-207.   DOI
29 Favvata, J.M., Karayannis, C.G. and Liolios, A.A. (2009), "Influence of exterior joint effect on the inter-story pounding interaction of structures", Struct. Eng. Mech., 33(2), 113-136.   DOI
30 Kim, S.H., Lee, S.W and Mha, H.S. (2000), "Dynamic behaviors of the bridge considering pounding and friction effects under seismic excitations", Struct. Eng. Mech., 10, 621-633.   DOI
31 Mahmoud, S. and Gutub, S. (2013), "Earthquake induced pounding-involved response of base-isolated buildings incorporating soil flexibility", Adv. Struct. Eng., 16(12), 71-90.
32 Mahmoud, S. and Jankowski, R. (2010), "Pounding-involved response of isolated and non-isolated buildings under earthquake excitation", Earthq. Struct., 1(3), 3250-3262.
33 Mahmoud, S., Abdelhameed, A. and Jankowski R. (2013), "Earthquake-induced pounding between equal height multi-storey buildings considering soil-structure interaction", Bull. Earthq. Eng., 11(4), 1021-1048.   DOI
34 Mahmoud, S., Genidy, M. and Tahoon, H. (2017), "Time-history analysis of reinforced concrete frame buildings with soft storeys", Arab. J. Sci. Eng., 42(3), 1201-12017.   DOI
35 Maison, B.F. and Kasai, K. (1992), "Dynamics of pounding when two buildings collide", Earthq. Eng. Struct. Dyn., 21, 957-77.