• Title/Summary/Keyword: stormwater

Search Result 351, Processing Time 0.031 seconds

A study on stormwater fee imposition for sustainable rainwater management (지속가능한 빗물관리를 위한 강우유출수 부담금 도입방안 검토)

  • Kim, Gil-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • Management of stormwater runoff is considered a nationwide challenge. To deal with this challenge, many researches have been conducted to study initial stage of stormwater fee imposition. The objective of this study was to recommend a framework for stormwater fee imposition not only for funding the stormwater management programs but also for encouraging people to decrease impervious area. This study focused on, regulations, financial resources and international cases related to stormwater runoff management. Polluter pays principle, which is generally recognized environmental policy principle is regarded the basis of stormwater fee imposition. Three components suggested for the stormwater rate structure are 1) stormwater utility revenue requirement, 2) billable equivalent stormwater unit, 3) system unit cost. The key point of stormwater rate structure is the "Equivalent Residential Unit(ERU)". The concept of an ERU is one residential area with a runoff coefficient. The runoff coefficient is that portion of rainfall that becomes runoff rather than infiltrating into the ground. In addition to this, this study took into account the observed data simulation for the separation of stormwater treatment expenditure from the comprehensive wastewater treatment cost.

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

Investigation on the effects of microbial community presence and survival to the water quality performance of urban stormwater nature-based solutions

  • Geronimo, Franz Kevin;Guerra, Heidi;Jeon, Minsu;Reyes, Nash jett;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.139-139
    • /
    • 2022
  • Nature-based solutions (NBS) involved conservation or rehabilitation of natural ecosystems or the creation of natural processes in modified or artificial ecosystems to mimic natural processes for the improved management of water (UN-Water, 2018). This study investigated the relationship between microbial presence and survival to the pollutant treatment performance of seven different stormwater NBS managing urban stormwater runoff. In this study, seven different stormwater nature-based solution (NBS) was investigated to identify the relationship of microbial community to the pollutant removal performance of stormwater NBS. Based on this study, Proteobacteria was found to be the most dominant microorganism for all stormwater NBS and IS followed by Acidobacteria and Actinobacteria. Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, WS3, and AF234118_p were found to have high positive correlation to most pollutant removal efficiency of different stormwater NBS (r-value: 0.62 to 0.68). Using Proteobacteria and Acidobacteria count in stormwater NBS, equations predicting pollutant removal performance were also developed and may be used in minimizing the cost for stormevent monitoring to identify the pollutant removal performance of stormwater NBS.

  • PDF

Influence of Low Growing Vegetation in Reducing Stormwater Runoff on Green Roofs

  • Krishnan, Raymond;Ahmad, Hamidah
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.273-278
    • /
    • 2014
  • Green roof's performance in reducing stormwater runoff has been reported by numerous studies. Nonetheless, the roles of low growing vegetation in influencing stormwater runoff reduction on green roofs have been greatly overlooked. This paper describes an experiment investigating the influence of low growing vegetation in the reduction of tropical stormwater runoff on extensive green roofs. Three types of locally occurring native vegetation and one non-native Sedum species were selected (fern, herb, grass and succulent) for the experiment. Stormwater runoff reduction performance from different low growing species was done by measuring excess water runoff from the simulated green roof modules. The results show significant differences in stormwater runoff reduction from different types of vegetation. Fern was the most effective in reducing stormwater runoff, followed by herb, Sedum and grass. Vegetative characters that are found to attribute towards the performance of stormwater runoff are rooting density, structure, density, leaf type, and vegetation biomass.

A Review of the Application of Constructed Wetlands as Stormwater Treatment Systems

  • Reyes, Nash Jett;Geronimo, Franz Kevin;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.162-162
    • /
    • 2022
  • Stormwater management is an essential component of land-use planning and development. Due to the additional challenges posed by climate change and urbanization, various stormwater management schemes have been developed to limit flood damages and ease water quality concerns. Nature-based solutions (NBS) are increasingly used as cost-effective measures to manage stormwater runoff from various land uses. Specifically, constructed wetlands were already considered as socially acceptable green stormwater infrastructures that are widely used in different countries. There is a large collection of published literature regarding the effectiveness or efficiency of constructed wetlands in treating stormwater runoff; however, metadata analyses using bibliographic information are very limited or seldomly explored. This study was conducted to determine the trends of publication regarding stormwater treatment wetlands using a bibliometric analysis approach. Moreover, the research productivity of various countries, authors, and institutions were also identified in the study. The Web of Science (WoS) database was utilized to retrieve bibliographic information. The keywords ("constructed wetland*" OR "treatment wetland*" OR "engineered wetland*" OR "artificial wetland*") AND ("stormwater*" or "storm water*") were used to retrieve pertinent information on stormwater treatment wetlands-related publication from 1990 up to 2021. The network map of keyword co-occurrence map was generated through the VOSviewer software and the contingency matrices were obtained using the Cortext platform (www.cortext.net). The results obtained from this inquiry revealed the areas of research that have been adequately explored by past studies. Furthermore, the extensive collection of published scientific literature enabled the identification of existing knowledge gaps in the field of stormwater treatment wetlands.

  • PDF

Review of Stormwater Quality, Quantity and Treatment Methods Part 1: Stormwater Quantity Modelling

  • Aryal, Rupak;Kandasamy, J.;Vigneswaran, S.;Naidu, R.;Lee, S.H.
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • A review of stormwater quantity and quality in the urban environment is presented. The review is presented in three parts. The first part reviews the mathematical methods for stormwater quantity and has been undertaken by examining a number of stormwater models that are in current use. The important feature of models, their applications, and management has been discussed. Different types of stormwater management models are presented in the literatures. Generally, all the models are simplified as conceptual or empirical depending on whether the model is based on physical laws or not. In both cases if any of the variables in the model are regarded as random variables having a probability distribution, then the model is stochastic model. Otherwise the model is deterministic (based on process descriptions). The analytical techniques are presented in this paper.

Comparison of Water Characteristics of Cleaning Wastewater and Stormwater Runoff from Highways (고속도로 청소폐수와 노면유출수의 수질특성 비교)

  • Lee, Ju-Goang;Lee, Eui-Sang
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.169-176
    • /
    • 2007
  • The paved areas in nonpoint source are highly polluted landuses because of high imperviousness and pollutant mass emissions, such as sand, cereals, and dust from vehicle activities. Most of them in highways are collected by cleaning trucks or discharged to the adjacent soil and water system through the drain ditch in stormwater. Therefore, it is necessary to investigate the relationship between water concentration and total pollutant loadings from the paved areas. From the experiment, CODcr concentration of the cleaning wastewater was 17 times greater than that of the stormwater runoff. Also, concentrations of heavy metals (Cu, Fe, Zn) were 1.3 to 1.5 times higher when compared to the stormwater runoff. While total discharged loadings was insignificant in the cleaning wastewater. In conclusion, these results provide some evidence that the stormwater runoff may be managed carefully to the aspect of total pollutant loadings and the cleaning wastewater may be handled cautiously with the pollutant concentrations in highways.

A Study on Stormwater Retention and Infiltration Ponds System for Improvement of Water Circulation and Increase of Bio-diversity (물 순환 개선 및 생물다양성 증진을 위한 우수저류 및 침투연못 시스템에 관한 연구)

  • Kim, Kwi-Gon;Kim, Hyea-Ju;Lee, Jae-Chul;Kim, Jong-Sub;Jang, Hey-Young;Son, Sam-Gi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.53-65
    • /
    • 2000
  • The objectives of this study are to develop a stormwater management system that would contribute to improving water circulation, recycling storm water and promoting biodiversity in urban areas, to apply the system in an actual site, and to verify its effectiveness in order to generate a stormwater management system applicable in Korea. This study reviewed former researches and case studies, categorized stormwater management system into pre-treatment, retention and infiltration phases, and analyzed the strength and weakness of the techniques by synthesizing unit techniques of each stage. As a result, the process of the stormwater management system includes the following phases: 1) a rubble filtration layer; 2) a retention pond; 3) a infiltration pond; and 4) a stormwater retention pool (recirculation and recycling). Then, an empirical study to design and create the generated system according to the features of a site and to verify its effectiveness was conducted. The future study direction is to verify the effectiveness of the developed stormwater retention and infiltration ponds. To this end, it is planned to perform hydrological monitoring using automatic measuring equipment and monitoring on habitat bases and the biota living on the base. Based on its outcome, the applied model would be refined and improved to develop an alternative stormwater management system that would allow to achieve the improvement of urban water circulation, increase of biodiversity and efficient use of water resources.

  • PDF

A Study on the Calculation of Stormwater Utility Fee Using GIS based Impervious Surface Ratio Estimation Methodology (GIS 기반 불투수율 산정방법론을 활용한 강우유출수 부담금 모의산정 방안 연구)

  • Yoo, Jae Hyun;Kim, Kye Hyun;Choi, Ji Yong;Lee, Chol Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Korea needs to develop a rational system to separate stormwater utility fee from current sewerage fee. In this study, the scenario for calculating stormwater utility fee of Bupyeong-gu was suggested and the results were considered. For this purpose, the application of stormwater utility fee overseas and current domestic system were analyzed. A three step calculating scenario considering suitable domestic situation and impervious surface area was suggested. Water, sewerage usage, and hydrant data were collected. The total amount of water and sewerage fees for land use were calculated. The sewerage fee of Bupyeong-gu for the year 2014 was 21,685,446,578 won. Assuming that 40% of this amount was the cost associated to stormwater, the result showed that the fees for residential area in third step decreased by 0.77% compared to that of the first step. For commercial area, the stormwater utility fee decreased by 36.87%. For industrial area, although the consumption of water was similar to that of commercial area, the stormwater utility fee increased by 8.35%. For green area, the fee increased by 37.46%. This study demonstrated that the calculation of actual stormwater utility fee using impervious surface map and impervious Surface Ratio Estimation Methodology developed in previous studies is feasible.

Best Site Identification for Spatially Distributed On-Site Stormwater Control Devices in an Urban Drainage System (도시유역에서 공간적으로 분포된 소규모 강우유출수 관리시설의 최적설치위치선정)

  • Kim, Sangdan;Lim, Yong Kun;Kim, Jin Kwan;Kang, Dookee;Seo, Seongcheol;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.986-993
    • /
    • 2010
  • Spatially distributed on-site devices such as bioretentions and bioboxfilters are becoming more common as a means of controlling urban stormwater quality. One approach to modeling the cumulative catchment-scale effects of such devices is to resolve the catchment down to the scale of a land parcel or finer, and then to model each device separately. The focus of this study is to propose a semi-distributed model for simulating urban stormwater quantity and identifying best sites for spatially distributed on-site stormwater control devices in an urban drainage system. A detailed model for urban stormwater improvement conceptualization simulation is set up for a $0.9342km^2$.