• 제목/요약/키워드: storm sewer

검색결과 122건 처리시간 0.018초

오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 - (Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load -)

  • 이두진;신응배
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교 (Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall)

  • 임봉수;김도영;이광춘
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

조위의 영향을 고려한 도심지 배수유역에서의 범람모의 (Inundation simulation in a urban drainage basin considering tidal stage effect)

  • 김대근;최경순;고영찬
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.711-717
    • /
    • 2009
  • In this study, SWMM model is used to reproduce the main storm sewer system located in the Nae-Hang drainage basin of the Mokpo city and keep track of flood discharge. Given the outlet of the reaches border the coastline, this paper has taken the dual-drainage approach to perform inundation simulation, considering both the overflows and inflows at the manholes of the sewer system, and at the same time, taking the impacts of tidal stage into consideration. The following conclusions are reached in this study: First, when planning lowland sewer system alongside the coastline or the riverside, the tidal stage or flood stage need to be considered in the planning and design processes. Second, an analysis that fails to consider overflow and inundation at the manholes may overestimate inundation depth of the flooded area. In other words, in order to estimate flood discharge and flood stage in a lowland storm sewer system, it is desirable to analyze the conveyance capacity of storm sewer system and simulate overflow and inundation at the manholes at the same time.

우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로- (Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul)

  • 이재준;이정식;전병호;이종태
    • 물과 미래
    • /
    • 제26권2호
    • /
    • pp.49-57
    • /
    • 1993
  • 본 연구는 하수관거 설계시, 계획강우의 임계지속기간을 결정하기 위한 것으로서, 지속기간내의 시간적 강우분포형은 Huff의 4분위법에 의하였으며, 20분~240분의 9개의 지속기간을 10년 빈도강우에 대하여 검토하였다. 본 연구에서는 서울시 관내의 18개 유수지 배수구역을 대상으로 해석을 시도하였으며, 유출해석을 위하여 ILLUDAS 모형을 이용하였다. 하수관거의 설계수문량 기준이 되는 첨두유출량을 최대로 발생시키는 계획강우의 임계지속기간은 대체로 30,60분으로 판단되었다. 계획강우의 시간적 분포형별로 임계지속기간을 설정할 수 있도록 첨두유량-유역면적-임계지속기간의 관계도를 제시하였다.

  • PDF

하수관거 통수능 검토를 통한 관거 개선방안 연구 (Sewerage rehabilitation strategy based on sewer capacity evaluation)

  • 류재나;오재일;오석호
    • 상하수도학회지
    • /
    • 제23권1호
    • /
    • pp.47-55
    • /
    • 2009
  • Sewers are important national infrastructure and play an essential part by handling both wastewater and stormwater to minimise problems caused to human life and the environment. However, they can cause urban flooding when rainfall exceeds the system capacity. Sewer flooding is an unwelcome and increasingly frequent problem in many urban areas, and its frequency will increase over time with urbanisation and climate change. Under current standards, sewers are designed to drain stormwater generated by up to 10 year return period storms, but data suggests that many in practice have been experienced flooding with exceeding system capacity under increased storm events. A large number of studies has considered upgrading or increasing the design standard but there are still lack of information to propose a suitable return period with the corresponding system quantity to achieve. A methodology is required to suggest a proper level of standard within a suitable sewerage rehabilitation planning that can avoid the exceedance problem. This study aimed to develop a methodology to support effective sewer rehabilitation that could prevent urban flooding mainly resulted from the exceedance of existing storm sewer system capacity. Selected sewerage rehabilitation methods were examined under different storm return periods and compared to achieve the best value for money.

GIS 기반의 SWMM 모형을 이용한 하수도시스템 선정에 따른 도시하천 수질개선효과의 정량적 분석 (Analysis of the Effects of Sewer System on Urban Stream using SWMM based on GIS)

  • 장주형;박해식;박청길
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.982-990
    • /
    • 2006
  • Generally CSOs (Combined Sewer Overflows) are regarded as one of the most serious nonpoint pollution source in the urban watershed, Particularly, the water quality of the Oncheon stream is seriously affected by CSOs because the capacity of interception sewer system connected to the Suyoung wastewater treatment plant is too small to intercept most storm water discharges. The objective of this study is to evaluate the effect of nonpoint source on an urban stream with regards to combined sewer system and separate sewer system using GIS (Geographic Information System) and SWMM (Storm Water Management Model), and to provide an insight for the management of urban stream water quality. In order to consider the effect of CSOs on the receiving water quality, the flow divider element in SWMM was applied. The model calibration and verification were performed by the measured data of quantity and quality on the Oncheon stream. The quantity data acquired from the Suyoung wastewater treatment plant were also used for this procedure. In case of separate sewer system, the modeling results showed the increased tendency in streamflow compared with the combined system in dry weather, In addition, the water quality is remarkably improved in rainfall events at the separate condition. The results imply that the construction of separate sewer system should be taken into first consideration to restore the quality and quantity of water in urban streams.

우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과 (Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System)

  • 이광춘;최봉철;임봉수
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건 (Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment)

  • 한정균;주재영;이범준;나지훈;박철휘
    • 상하수도학회지
    • /
    • 제23권5호
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

AFOSM 방법에 의한 하수관망의 신뢰성 분석 (Reliability Analysis of Storm Sewer System by AFOSM Method)

  • 김문모;이원환;조원철
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.201-209
    • /
    • 1993
  • 본 연구는 하수관망의 신뢰성을 분석하기 위한 것으로, AFOSM 방법의 적용성을 판단하기 위해 이 기법을 신정유수지 유역에 적용하였다. 파괴점을 찾기 위한 방법으로는 비선형성에 의한 오차를 줄일 수 있는 Rackwitz Algorithm을 이용하였다. 위험도를 산정하는데 필요한 실행함수를 설정하기 위해 하중을 결정하는 데는 합리식을 사용하였고, 용량을 결정하는 식으로는 Manning의 식과 Darcy-Weisbach 식의 2가지를 이용하여 위험도를 구하였으며, 위험도는 각각 0.119, 0.127로 나타났다. 또한, 재현기간별 Risk-Safety Factor 관계를 유도하여 신뢰성 분석에 기초한 하수관망의 설계를 할 수 있도록 하였다.

  • PDF