• Title/Summary/Keyword: storage proteins

Search Result 254, Processing Time 0.025 seconds

Effect of Various Fruit-loads on Nitrogen Partitioning, Accumulation, and Remobilization in Young Trees of 'Fuyu' Persimmon (착과 정도가'부유'단감 유목의 질소화합물 분배와 축적 및 재이용에 미치는 영향)

  • Park, Soo-Jeong;Kim, Young-Kee
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.57-62
    • /
    • 2011
  • This study was conducted to determine the distribution of nitrogenous compounds to various tree parts and the extent of reserve accumulation in persimmon (Diospyros kaki) under various fruit-loads. This study also ascertained the proportion of storage nitrogen made available for the new growth the following year. On June 15, the fruit-load was adjusted to a leaf-fruit (L/F) ratio of 10, 20, and 30, and some trees were completely defruited. Between June 15 and November 11, the increase of total amino acids were greater with a high L/F ratio. The amino acids increased in the root were negligible at the 10-L/F ratio. Of the total amino acids increased during this period, the proportion distributed to the root was 64% in the 20-L/F, 18.5% in the 30-L/F, and 81% in the defruited trees, and the distribution to the fruits was 81% in 10-L/F, 12% in 20-L/F, and 35% in the 30-L/F trees. Leaf amino acids decreased in the 10-L/F trees. Total proteins increased in autumn were greater as the L/F ratio was higher. Total proteins were in the fruits the most, and the distribution to the permanent parts was decreased as the L/F ratio was decreased. At the L/F ratio of 30, 59% of the total proteins increased in the autumn was distributed to the fruits and 40% to the root. Leaf proteins decreased at 10 and 20 L/F ratios. During the new growth from April 10 to June 10 the following year, amino acids decreased in the old wood and 1-yr-old shoot, whereas proteins decreased only in the 1-year-old shoots. Amino acids and protein decreased by 540 mg and 610 mg, respectively, in the roots of the defruited trees. Total amino acid and proteins in the newly-grown parts were the most at 730 mg and 1290 mg, respectively, when defruited the previous year. They were the least at the 10-L/F ratio, being 120 mg and 400 mg, respectively.

DETECTION OF PHYSIOLOGICAL PROCESSES IN WHEAT BY NIR

  • Salgo, A.;Gergely, Sz.;Scholz, E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1158-1158
    • /
    • 2001
  • Fast and dynamic biochemical, enzymatic and morphological changes occur during the so-called generative development and during the vegetative processes in seeds. The most characteristic biochemical and compositional changes of this period are the formation and decline of storage components or their precursors, the change of their degree in polymerization and an extensive change in water content. The aim of the present study was to detect the maturation processes in seed nondestructively and to verify the applicability of near infrared spectroscopic methods in the measurement of physiological, chemical and biochemical changes in wheat seed. The amount and variation of different water “species” has been changed intensively during maturation. Characteristic changes of three water absorption bands (1920, 1420 and 1150 nm) during maturation were analysed. It was concluded that the free/bound transition of water molecules could be followed sensitively in different region of NIR spectra. Kinetic changes of carbohydrate reserves were characteristic during maturation. An intensive formation and decline of carbohydrate reserves were observed during early stage of maturation (0 -13 days, high energy demand). An accelerated formation of storage carbohydrates (starch) was detected in the second phase of maturation. Five characteristic absorption bands were analysed which were sensitive indicators the changes of carbohydrates occurred during maturation. Precursors of protein synthesis and the synthesis of reserve proteins and their kinetic changes during maturation were followed from NIR spectra qualitative and qualitatively. Dynamic formation of amino acids and the changes of N forms were detected by spectroscopic, chromatographic and by capillary electrophoresis methods. Calibration equations were developed and validated in order to measure the optimal maturation time protein and moisture content of developing wheat seeds. The spectroscopic methods are offering chance and measurement potential in order to detect fine details of physiological processes. The spectra have many hidden details, which can help to understand the biochemical background of processes.

  • PDF

Genetic variation of 7S and 11S globulins in soybean seed (콩 종실 단백질의 유전변이)

    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.198-203
    • /
    • 1999
  • 7S and 11S globulins are two major storage proteins in soybean seed. For improving the quality of soybean seed protein, an increase of 11S/7S ratio would be a desirable objective because 11S globulin contains much more sulfur-containing amino acids than 7S globulin. In this study, six soybean varieties grown at three locations were used for genetic variation analysis of 7S and 11S globulins. It was possible to screen the soybean genotypes having aberrant subunit compositions of the two globulins by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). So, heritabilities, genotypic and phenotypic correlations among eight globulin fraction contents of soybean seeds were estimated. The mean value of 7S and 11S globulin fraction contents were 38.9% and 61.1%, respectively, and the ratio of 7S to 11S globulin ranged from 0.58 to 0.74. The high heritability value was found in $\beta$ subunits but the values of acidic and basic subunits were relatively low. Genotypic correlations were higher than the corresponding phenotypic correlations in most of globulin subunit contents. $\beta$ subunits was negatively correlated with $\alpha$ and $\alpha$' subunits among 7S fractions, while no significant correlation between $\alpha$ and $\alpha$' subunits could be found In case of 11S fractions, acidic and basic subunits exhibited no genotypic but negative phenotypic correlation.

  • PDF

Biochemical and Ultrastructural Trends in Proteolysis of the $\beta$-subunit of 7S Protein in the Cotyledons During Germination of Soybean Seeds

  • Krishnan, Hari B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • Antibodies raised against the purified p-subunit of $\beta$-conglycinin were used in immunohistochemical studies to monitor the pattern of $\beta$-conglycinin mobilization in the cotyledons during soybean [Glycine max (L.) Merr.] seed germination. Western blot analysis revealed that the break down of the $\beta$-subunit of $\beta$-conglycinin commenced as early as 2 days after seed imbibition (DAI). Concurrent with the degradation of the $\beta$-subunit of $\beta$-conglycinin, accumulation of 48, 28, and 26 kD proteolytic intermediates was observed from 2 to 6 DAI. Western blot analysis also revealed that the acidic subunit of glycinin was mobilized earlier than the basic subunit. The basic glycinin subunit was subjected to proteolysis within 2 DAI resulting in the appearance of an intermediate product approximately 2 kD smaller than the native basic glycinin subunit. In contrast to the major seed storage proteins, lipoxygenase was subjected to limited proteolysis and was detected even after 8 DAI. The first sign of $\beta$-conglycinin breakdown was observed near the vascular strands and proceeded from the vascular strands towards the epidermis. Protein A-gold localization studies using thin sections of soybean cotyledons and antibodies raised against the $\beta$-subunit of $\beta$-conglycinin revealed intense labeling over protein bodies. A pronounced decrease in the protein A-gold labeling intensity over protein bodies was observed at later stages of seed germination. The protein bodies, which were converted into a large central vacuole by 8 DAI, contained very little 7S protein as evidenced by sparse protein A-gold labeling in the vacuoles.

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

  • Angel, Laura Iztacihuatl Serrano;Segura, Daniel;Jimenez, Jeiry Toribio;Barrera, Miguel Angel Rodriguez;Pineda, Carlos Ortuno;Ramirez, Yanet Romero
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2020
  • The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.

Influence of Soybean Storage Condition on Soybean Curd Quality (대두(大豆) 저장조건(貯藏條件)이 두부품질(品質)에 미치는 영향(影響))

  • Chang, Hak-Gil;Yoo, Yang-Ja;Han, Myung-Kyoo
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.382-386
    • /
    • 1987
  • Changes of proteins of whole soybean and soy flour stored under different conditions of humidity (RH 65% and 85%) and packing material (HDPE and OPP/Al/PE film) for 90 days and their influence on formation of soybean curd were investigated. The water holding capacity, total nitrogen, soluble nitrogen, pH and Amylograph viscosity of whole soybean and soy flour were rapidly decreased during storage at high relative humidity. Furthermore, such quality changes were accompanied by considerable differences in final quality of soybean curds; lower volumes of soybean curds. Under the conditions of HDPE and OPP/Al/PE film packing, smaller changes were observed in protein qualify than those without packing.

  • PDF

In Vitro N-Glycan Mannosyl-Phosphorylation of a Therapeutic Enzyme by Using Recombinant Mnn14 Produced from Pichia pastoris

  • Kang, Ji-Yeon;Choi, Hong-Yeol;Kim, Dong-Il;Kwon, Ohsuk;Oh, Doo-Byoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • Enzyme replacement therapy for lysosomal storage diseases usually requires recombinant enzymes containing mannose-6-phosphate (M6P) glycans for cellular uptake and lysosomal targeting. For the first time, a strategy is established here for the in vitro mannosyl-phosphorylation of high-mannose type N-glycans that utilizes a recombinant Mnn14 protein derived from Saccharomyces cerevisiae. Among a series of N-terminal- or C-terminal-deleted recombinant Mnn14 proteins expressed in Pichia pastoris, rMnn1477-935 with deletion of N-terminal 76 amino acids spanning the transmembrane domain (46 amino acids) and part of the stem region (30 amino acids), showed the highest level of mannosyl-phosphorylation activity. The optimum reaction conditions for rMnn1477-935 were determined through enzyme assays with a high-mannose type N-glycan (Man8GlcNAc2) as a substrate. In addition, rMnn1477-935 was shown to mannosyl-phosphorylate high-mannose type N-glycans (Man7-9GlcNAc2) on recombinant human lysosomal alpha-glucosidase (rhGAA) with remarkably high efficiency. Moreover, the majority of the resulting mannosyl-phosphorylated glycans were bis-form which can be converted to bis-phosphorylated M6P glycans having a superior lysosomal targeting capability. An in vitro N-glycan mannosyl-phosphorylation reaction using rMnn1477-935 will provide a flexible and straightforward method to increase the M6P glycan content for the generation of "Biobetter" therapeutic enzymes.

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

Distinct sets of lysosomal genes define synucleinopathy and tauopathy

  • Kyu Won Oh;Dong-Kyu Kim;Ao-Lin Hsu;Seung-Jae Lee
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.657-662
    • /
    • 2023
  • Neurodegenerative diseases are characterized by distinct protein aggregates, such as those of α-synuclein and tau. Lysosomal defect is a key contributor to the accumulation and propagation of aberrant protein aggregates in these diseases. The discoveries of common proteinopathies in multiple forms of lysosomal storage diseases (LSDs) and the identification of some LSD genes as susceptible genes for those proteinopathies suggest causative links between LSDs and the proteinopathies. The present study hypothesized that defects in lysosomal genes will differentially affect the propagation of α-synuclein and tau proteins, thereby determining the progression of a specific proteinopathy. We established an imaging-based high-contents screening (HCS) system in Caenorhabditis elegans (C. elegans) model, by which the propagation of α-synuclein or tau is measured by fluorescence intensity. Using this system, we performed RNA interference (RNAi) screening to induce a wide range of lysosomal malfunction through knock down of 79 LSD genes, and to obtain the candidate genes with significant change in protein propagation. While some LSD genes commonly affected both α-synuclein and tau propagation, our study identified the distinct sets of LSD genes that differentially regulate the propagation of either α-synuclein or tau. The specificity and efficacy of these LSD genes were retained in the disease-related phenotypes, such as pharyngeal pumping behavior and life span. This study suggests that distinct lysosomal genes differentially regulate the propagation of α-synuclein and tau, and offer a steppingstone to understanding disease specificity.

Quality attributes and shelf-life of freshly cut beef coated with waste feather keratin-ginger starch composite enriched with avocado peel polyphenolic-rich extract

  • Olarewaju M Oluba;Samuel I Ojeaburu;Opeyemi A Bayo-Olorunmeke;Georgina Erifeta;Sunday J Josiah
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • The utilization of coatings composed of bio-based materials in the processing and preservation of meat presents an environmentally conscious, secure, cost-effective, and superior method for prolonging the storage life of meat while also preserving its nutritional value. In this study, changes in physical, chemical, and microbiological characteristics of freshly cut beef coated with distilled water (control) and keratin-starch composites (K-S) functionalized with 0.0-, 0.2-, 0.6-, and 1.0-mL avocado peel polyphenolic-rich extract (APPPE) kept at 4℃ for 12 days were evaluated periodically at 3-day interval using standard techniques. Keratin was extracted from waste feathers, while starch was obtained from ginger rhizomes. Following a 12-day storage period, beef coated with APPPE-enriched K-S composites exhibited a significant (p<0.05) improvement in shelf life by minimizing deteriorative changes in pH and color (as determined by metmyoglobin level) in addition to inhibiting oxidative changes in lipids (as determined by TBARS level) and proteins (protein carbonyl level) in comparison to control and K-S composite without APPPE. Furthermore, microbial growth was significantly (p<0.05) suppressed in meat coated with K-S composite functionalized with APE at 0.6 and 1.0 mL compared to the control. The study suggested that APPPE-enriched K-S composite could offer an eco-friendly and safe food preservation technique for fresh meat.