• Title/Summary/Keyword: storage device

Search Result 1,072, Processing Time 0.024 seconds

A Design and Implementation for a Reliable Data Storage in a Digital Tachograph (디지털 자동차운행기록계에서 안정적인 데이터 저장을 위한 설계 및 구현)

  • Baek, Sung Hoon;Son, Myunghee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • The digital tachograph is a device that automatically records speed and distance of a vehicle, together with the driver's activity and vehicle status at an accident. It records vehicle speed, break status, acceleration, engine RPM, longitude and latitude of GPS, accumulated distance, and so on. European Commission regulation made digital tachographs mandatory for all trucks from 2005. Republic of Korea made digital tachographs mandatory for all new business vehicles from 2011 and is widening the range of vehicles that must install digital tachographs year by year. This device is used to analyze driver's daily driving information and car accidents. Under a car accident that makes the device reliability unpredictable, it is very important to store driving information with maximum reliability for its original mission. We designed and implemented a practical digital tachograph. This paper presents a storage scheme that consists of a first storage device with small capacity at a high reliability and a second storage device with large capacity at a low cost in order to reliably records data with a hardware at a low cost. The first storage device records data in a SLC NAND flash memory in a log-structured style. We present a reverse partial scan that overcomes the slow scan time of log-structured storages at the boot stage. The scheme reduced the scan time of the first storage device by 1/50. In addition, our design includes a scheme that fast stores data at a moment of accident by 1/20 of data transfer time of a normal method.

An Efficient WLAN Device Power Control Technique for Streaming Multimedia Contents over Mobile IP Storage (모바일 IP 스토리지 상에서 멀티미디어 컨텐츠 실행을 위한 효율적인 무선랜 장치 전력제어 기법)

  • Nam, Young-Jin;Choi, Min-Seok
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.357-368
    • /
    • 2009
  • Mobile IP storage has been proposed to overcome storage limitation in the flash memory and hard disks. It provides almost capacity-free space for mobile devices over wireless IP networks. However, battery lifetime of the mobile devices is reduced rapidly because of power consumption with continuous use of a WLAN device when multimedia contents are being streamed through the mobile IP storage. This paper proposes an energy-efficient WLAN device power control technique for streaming multimedia contents with the mobile IP storage. The proposed technique consists of a prefetch buffer input/output module, a WLAN device power control module, and a reconfigurable prefetch buffer module. Besides, it adaptively determines the size of the prefetch buffer according to a quality of the multimedia contents, and it dynamically controls the power mode of the WLAN device on the basis of power on-off operations while streaming the multimedia contents. We evaluate the performance of the proposed technique on a PXA270-based mobile device that employs the embedded linux 2.6.11, Intel iSCSI reference codes, and a WLAN device. Extensive experiments reveal that the proposed technique can save the energy consumption of the WLAN device up to 8.5 times with QVGA multimedia contents, as compared with no power control.

Energy-Efficient Storage with Flash Device in Wireless Sensor Networks (무선 센서 네트워크에서 플래시 장치를 활용한 에너지 효율적 저장)

  • Park, Jung Kyu;Kim, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.975-981
    • /
    • 2017
  • In this paper, we propose a method for efficient use of energy when using flash device in WSN environment. Typical Flash devices have a drawback to be an energy efficient storage media in the energy-constrained WSNs due to the high standby energy. An energy efficient approach to deploy Flash devices into WSNs is simply turning the Flash device off whenever idle. In this regard, we make the simple but ideal approach realistic by removing these two obstacles by exploiting nonvolatile RAM (NVRAM), which is an emerging memory technology that provides both non-volatility and byte-addressability. Specifically, we make use of NVRAM as an extension of metadata storage to remove the FTL metadata scanning process that mainly incurs the two obstacles. Through the implementation and evaluation in a real system environment, we verify that significant energy savings without sacrificing I/O performance are feasible in WSNs by turning off the Flash device exploiting NVRAM whenever it becomes idle. Experimental results show that the proposed method consumes only about 1.087% energy compared to the conventional storage device.

Development of Automatic Seed Metering Device (자동제어식 파종조절장치 개발)

  • Lee, Y.K.;Lee, D.W.;Oh, Y.Z.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.91-98
    • /
    • 1994
  • Planting, transplanting, and harvesting are important processes for the successful production of farm products in Korea because those require the high labor intensity during limitted period. Recently, many researches of using automatic control with a microcomputer are carried in the agricultural field, but are not much spread to the seeder development. Automatic sowing technology would be much attractive if there was a way to assure that each seed was count accurately in the seed metering device. Thus, an automatic seed metering device was designed and constructed to be controlled by microcomputer. This device could be improved in not only counting the number of seeds in but also sowing seeds between row spacings. Automatic seed metering device consisted of conveyor belt and temporary storage device. Performance of seed metering device depends on the apparatus including sensor, stepping motor and DC-solenoid. Research contents and results are summarized as follows. 1. The seed metering device involving seed hopper, sorter and temporary storage device was designed and constructed. 2. A seed counting system with six photo electric sensors, designed and built for this project, was adequate for tranferring and counting seeds accurately. 3. Operating algorithm for stepping motor and photo electric DC-solenoid was developed. The Seed metering device proved to be a smooth and accurate operating device using the algorithm. 4. The performance of second prototype metering device was examined with five kinds of seeds ; mung beans, red beans, white beans, black beans and corn to transfer and count the seeds. The error ratio of seed metering was less than 3.5%.

  • PDF

Refractive media flatness measurement by phase shifting digital holography (위상천이 디지털 홀로그래피를 이용한 평판의 표면 평면도 측정)

  • Jeon, Sung-Bin;Kim, Do-Hyung;Cho, Jang-Hyun;Park, No-Cheol;Yang, Hyun-Seok;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 2012
  • We measured the surface flatness of both sides for refractive media using the transmitted digital holography method. To enhance the accuracy of the result, phase-shifting system was used. With two different phase modulation of reference beam, the phase profile of object can be easily obtained. Thus, we proposed the surface measurement method which can measure large area fast, compared with conventional methods. To guarantee the reliability of obtained result, we compared with Zygo measurement system. With the proposed method, the surface flatness of $3.45{\mu}m$ resolution could be obtained.

Efficient FTL Mapping Management for Multiple Sector Size-based Storage Systems with NAND Flash Memory (다중 섹터 사이즈를 지원하는 낸드 플래시 메모리 기반의 저장장치를 위한 효율적인 FTL 매핑 관리 기법)

  • Lim, Seung-Ho;Choi, Min
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1199-1203
    • /
    • 2010
  • Data transfer between host system and storage device is based on the data unit called sector, which can be varied depending on computer systems. If NAND flash memory is used as a storage device, the variant sector size can affect storage system performance since its operation is much related to sector size and page size. In this paper, we propose an efficient FTL mapping management scheme to support multiple sector size within one NAND flash memory based storage device, and analyze the performance effect and management overhead. According to the proposed scheme, the management overhead of proposed FTL management is lower than conventional scheme when various sector sizes are configured in computer systems, while performance is less degraded in comparison with single sector size support system.

Electrostatic 2-axis MEMS Stage with a Large Area Platform for Probe-based Storage Devices (대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.179-189
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated f3r the purpose of an application to PSD (Probe-based Storage Device). However, all of the components (platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficiencies such as a few percentage, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having a large areal efficiency of about 25%. For obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design and analysis, the fabrication and measurement results. Experimental results show that the driving ranges of the fabricated stage along the x and y axis were 27$\mu$m, 38$\mu$m at the supplied voltages of 65V, 70V, respectively and the natural frequencies along x and y axis were 180Hz, 310Hz, respectively. The total size of the stage is about 5.9$\times$6.8mm$^2$ and the platform size is about 2.7$\times$3.6mm$^2$.

Archival Data Stability Evaluation and Aspect of BD-R TL Media (BD-R TL 매체의 장기 안정성 평가 및 보존 특성 향상에 관한 고찰)

  • Park, Sun-Joo;Kim, Do-Hyun;Lee, Kwan-Yong;Lee, Jae-Yong;Kim, Young Il;Bahng, Keuk-Young;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • The Blu-ray Disc Recordable-Triple Layer (BD-R TL) media is considered as one of strong candidates for archival application among optical media formats, due to its large capacity. However, the long-term stability and degradation aspect have not been fully understood yet for BD-R TL media. Thus, the BD-R TL media were recorded at full tracks and analyzed by the random-symbol error rate (R-SER) measurement at different recording layers and recording positions after the accelerated aging test to understand its long-term stability. Finally, the general degradation aspect of BD-R TL media was discussed to improve the long-term stability.

Optimization of Graph Processing based on In-Storage Processing (스토리지 내 프로세싱 방식을 사용한 그래프 프로세싱의 최적화 방법)

  • Song, Nae Young;Han, Hyuck;Yeom, Heon Young
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.473-480
    • /
    • 2017
  • In recent years, semiconductor-based storage devices such as flash memory (SSDs) have been developed to high performance. In addition, a trend has been observed of optimally utilizing resources such as the central processing unit (CPU) and memory of the internal controller in the storage device according to the needs of the application. This concept is called In-Storage Processing (ISP). In a storage device equipped with the ISP function, it is possible to process part of the operation executed on the host system, thus reducing the load on the host. Moreover, since the data is processed in the storage device, the data transferred to the host are reduced. In this paper, we propose a method to optimize graph query processing by utilizing these ISP functions, and show that the optimized graph processing method improves the performance of the graph 500 benchmark by up to 20%.

SOAR : Storage Reliability Analyzer (SOAR : 저장장치를 기반으로 하는 시스템의 신뢰성 분석도구 개발)

  • Kim, Young-Jin;Won, You-Jip;Kim, Ra-Kie
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.248-262
    • /
    • 2008
  • As the number of large size multimedia files increases and the importance of individual's digital data grows, storage devices have been advanced to store more data into smaller spaces. In such circumstances, a physical damage in a storage device can destroy large amount of important data. Therefore, it is needed to verify the robustness of various physical faults in storage device before certain systems are used. We developed SOAR(Storage Reliability Analyzer), Storage Reliability Analyzer, to detect physical faults in diverse kinds of HDD hardware components and to recover the systems from those faults. This is a useful tool to verify robustness and reliability of a disk. SOAR uses three unique methods of creating physical damages on a disk and two unique techniques to apply the same feature on file systems. In this paper, we have performed comprehensive tests to verify the robustness and reliability of storage device with SOAR, and from the verification result we could confirm SOAR is a very efficient tool.