• Title/Summary/Keyword: storage channel

Search Result 290, Processing Time 0.027 seconds

A Transmission-Efficient Broadcast Encryption System Based on Secret Sharing Method (비밀분산 기반의 효율적인 전송량을 갖는 브로드캐스트 암호시스템)

  • Lee, Jae Hwan;Park, Jong Hwan
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.412-424
    • /
    • 2016
  • Broadcast encryption (BE) is a cryptographic primitive that enables a sender to broadcast a message to a set of receivers in a secure channel. The efficiency of BE is measured by three factors: ciphertext transmission cost, user storage cost, and computational cost for decryption. In general, BE is applied to the environments where a large number of receivers should be accommodated, so that the transmission cost is considered as being the most important factor. In this paper, we suggest a new BE system, using Shamir's secret sharing method, which considerable reduces the transmission cost. In comparison to the previous Subset Difference (SD) system, the transmission size of our BE is longer until $r{\leq}\sqrt{n}$, but get shorter when $r{\geq}\sqrt{n}$ for number of revoked users and n number of total users. We show that the advantage can be achieved at the slight expense of both the storage and computational costs.

Experimental Study on the Inflow and Outflow Structures of Hwasun Flood Control Reservoir (화순 홍수조절지의 유입유출 구조물에 대한 수리모형실험 연구)

  • Lee, Sang-Hwa;Jin, Kwang-Ho;Ryu, Jong-Hyun;Kim, Soo-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.675-684
    • /
    • 2012
  • Recently, a heavy rainfall under climate change causes the flood exceeded river's conveyance. Flood control methods under the limited river width are the increase of embankment, the construction of storage pockets and diversion channel, the dredging of river bed. Hwasun flood control reservoir of washland is designed as the storage pockets and the regulating gate for the control of water level. In this study, the propriety of design was investigated through hydraulic experiments for the circumstances to exclude the constant flood discharge during operation period. In the results, the over flow rate of side weir exceeded the flow of design and indicated to be able to discharge the designed flow in the regulating gate opened 1.1 m. The high velocity 7.1 m/s behind the gate has investigated to reduce under 3.3 m/s by the baffle block.

A ZnO nanowire - Au nanoparticle hybrid memory device (ZnO 나노선 - Au 나노입자 하이브리드 메모리 소자)

  • Kim, Sang-Sig;Yeom, Dong-Hyuk;Kang, Jeong-Min;Yoon, Chang-Joon;Park, Byoung-Jun;Keem, Ki-Hyun;Jeong, Dong-Yuong;Kim, Mi-Hyun;Koh, Eui-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.20-20
    • /
    • 2007
  • Nanowire-based field-effect transistors (FETs) decorated with nanoparticles have been greatly paid attention as nonvolatile memory devices of next generation due to their excellent transportation ability of charge carriers in the channel and outstanding capability of charge trapping in the floating gate. In this work, top-gate single ZnO nanowire-based FETs with and without Au nanoparticles were fabricated and their memory effects were characterized. Using thermal evaporation and rapid thermal annealing processes, Au nanoparticles were formed on an $Al_2O_3$ layer which was semi cylindrically coated on a single ZnO nanowire. The family of $I_{DS}-V_{GS}$ curves for the double sweep of the gate voltage at $V_{DS}$ = 1 V was obtained. The device decorated with nanoparticles shows giant hysterisis loops with ${\Delta}V_{th}$ = 2 V, indicating a significant charge storage effect. Note that the hysterisis loops are clockwise which result from the tunneling of the charge carriers from the nanowire into the nanoparticles. On the other hand, the device without nanoparticles shows a negligible countclockwise hysterisis loop which reveals that the influence of oxide trap charges or mobile ions is negligible. Therefore, the charge storage effect mainly comes from the nanoparticles decorated on the nanowire, which obviously demonstrates that the top-gate single ZnO nanowire-based FETs decorated with Au nanoparticles are the good candidate for the application in the nonvolatile memory devices of next generation.

  • PDF

Experimental Implementation of a Cableless Seismic Data Acquisition Module Using Arduino (아두이노를 활용한 무선 탄성파 자료취득 모듈 구현 실험)

  • Chanil Kim;Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.103-113
    • /
    • 2023
  • In the oil and gas exploration market, various cableless seismic systems have been developed as an alternative to improve data acquisition efficiency. However, developing such equipment at a small scale for academic research is not available owing to highly priced commercial products. Fortunately, building and experimenting with open-source hardware enable the academic utilization of cableless seismic equipment with relatively low cost. This study aims to develop a cableless seismic acquisition module using Arduino. A cableless seismic system requires the combination of signal sensing, simple pre-processing, and data storage in a single device. A conventional geophone is used as the sensor that detects the seismic wave signal. In addition, it is connected to an Arduino circuit that plays a role in implementing the processing and storing module for the detected signals. Three main functions are implemented in the Arduino module: preprocessing, A/D conversion, and data storage. The developed single-channel module can acquire a common receiver gather from multiple source experiments.

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Grid Based Rainfall-Runoff Modeling Using Storage Function Method (저류함수기법을 이용한 격자기반의 강우-유출 모형 개발)

  • Shin, Cheol-Kyun;Cho, Hyo-Seob;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.969-978
    • /
    • 2004
  • According to the report of hydrologic modeling study, from a quantitative point of view, a lumped model is more efficient than a distributed model. A distributed model has to simplify geospatial characteristics for the shake of restricted application on computer calculation and field observation. In this reason, a distributed model can not help having some errors of water quantity modelling. However, considering a distribution of rainfall-runoff reflected spatial characteristics, a distributed model is more efficient to simulate a flow of surface water, The purpose of this study is modeling of spatial rainfall-runoff of surface water using grid based distributed model, which is consisted of storage function model and essential basin-channel parameters( slope, flow direction & accumulation), and that procedure is able to be executed at a personal computer. The prototype of this model is developed in Heongseong Multipunose Dam basin and adapted in Hapchon Multipurpose Dam basin, which is larger than the former about five times. The efficiency coefficients in result of two dam basin simulations are more than about 0.9, but ones at the upstream water level gauge station meet with bad result owing to overestimated rating curves in high water level. As a result of this study, it is easily implemented that spatially distributed rainfall-runoff model using GIS, and geophysical characteristics of the catchment, hereafter it is anticipated that this model is easily able to apply rainfall data by real time.

Analysis of Morphological Characteristics of Farm Dams in Korea (한국 농업용 저수지의 형태학적 특성 분석)

  • Yoo, Chul-Sang;Park, Hyun-Keun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.940-954
    • /
    • 2007
  • This study was to analyze a total of 18,068 farm reservoirs in Korea with their basic measures, and estimate their average characteristics. These characteristics have also been compared with those of foreign countries. Histograms of seven measures(approval area, beneficial area, watershed area, effective storage, full water area, dam length, and dam height) of reservoirs are made to characterize their distributions and to apply the Pareto analysis with the power law to evaluate their inequalities. The histogram analysis shows that the measures of dam(channel cross-section) characteristics follow the log-normal distributions, on the other hand, those of the basin characteristics the exponential-type distributions. Pareto analysis was done for the five measures of having exponential distribution. The Pareto exponents estimated are 0.38 for the approval area, 0.42 for the beneficial area, -0.19 for the effective storage, 0.30 for the watershed area, and 0.22 for the full water area, so the inequality of the beneficial area is the highest and that of the effective storage is the lowest. Analysis of morphology index versus watershed area shows that most reservoirs are categorized into deep or normal ones. These characteristics are also found to be similar to those of foreign countries.

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.