• Title/Summary/Keyword: stomatal characteristics

Search Result 99, Processing Time 0.04 seconds

Effects of Elevated $CO_2$ on Maize Growth

  • Kim, Young-Guk;Cho, Young-Son;Seo, Jong-Ho;Kim, Sok-Dong;Shin, Jin-Chul;Park, Ho-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.93-101
    • /
    • 2008
  • The effects of $CO_2$ enrichment on growth of maize (Zea mays L.) were examined. Parameters analyzed include growth characteristics, yields, photosynthetic rates, evaporation rates and photosynthesis-related characteristics under elevated $CO_2$. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ at the seedling stage and $30/23^{\circ}C$ from the silking stage. The plants were exposed to two elevated $CO_2$ of 500, 700ppm and ambient levels (350 ppm). Chalok 1 and GCB 70 germinated three days after seeding, and germination rates were faster in the elevated $CO_2$ than the control. Germination rates displayed significant differences among the $CO_2$ treatments. At the seedling stage, leaf area, top dry weight, and photosynthetic rates, and plant height indicated positive relationship with elevated $CO_2$ concentrations. At the $5{\sim}6$ leaf stage, $CO_2$ concentration also indicated positive relationship with plant height, leaf area, top dry weight, and photosynthetic rates. At the silking stage, increased plant height of Chalok 1 was noted in the $CO_2$ treatments compared to the control. No significant differences were noted for GCB 70, in which leaf area decreased but photosynthetic rates increased progressively with $CO_2$ concentration. Stomatal aperture was a little bigger in the elevated $CO_2$ than the control. $CO_2$ concentration was negatively related to stomatal conductance and transpiration rates, resulting in high water use efficiency.

Photosynthetic Characteristics of Rice Cultivars with Depending on Leaf Senescence during Grain Filling (엽노화 정도가 다른 벼 품종의 등숙기 광합성 특성)

  • 이변우;박재홍
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.216-223
    • /
    • 2003
  • This study was conducted to investigate the varietal differences in leaf senescence and the relationship between leaf senescence and photosynthesis during ripening stage of rice. During grain filling period, leaf senescence was evaluated by SPAD readings (an indirect indicator of chlorophyll content) for 3 rice varieties (SNU-SG1, Hwaseongbyeo, Nampungbyeo). SPAD value of flag leaf and 2nd leaf of SNU-SG1 were much higher than the other varieties and the leaves of SNU-SG1 also showed a tendency of delayed senescence as compared to the other varieties. Photosynthesis at light saturation (Pmax) of flag, 2nd and 3rd leaf in SNU-SG1 during grain filling period were much higher than Hwaseongbyeo and Nampungbyeo. The Pmax of the flag leaf in SNU-SG1 was especially higher over 20% than the other varieties. It was due to its higher mesophyll conductance and stomatal conductance as compared to the other varieties. Pmax, stomatal conductance and mesophyll conductance had positive correlation with SPAD value and nitrogen concentration of leaves. In conclusion, the stay green characteristics of SNU-SG1 would contribute to increasing the grain yield through the improved photosynthesis during grain filling.

Characteristics of Rice and Paddy Soil under No-Till Direct-Sown Rice-Wheat Cropping System

  • Cho, Young-Son;Choe, Zhin-Ryong;Lee, Byeong-Zhin
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • No-till direct-sown rice-wheat relaying cropping system has major advantages such as labor and cost saving by eliminating tillage and preparation of seed bed and transplanting. In this system, rice sowing was done simultaneously wheat harvesting. A paddy field experiment was conducted to evaluate effects of no-till years on soil microbial changes and soil physico-chemical characteristics with rice growth and development. Chemical fertilizers and agricultrual chemicals was not applied in no-till system. As the year in no-till direct-sown system the air permeability was increased and after water submerging soluble nitrogen was released Aerobic microbial-n was highest in May and then decreased after water irrigation. The population of aerobic soil microorganisms were steeply decreased after water submerging Soil microorganisms was decreased with the increased the soil depth. A month was needed for the seedling establishment in a no-tillage rice-wheat cropping system. Increased cropping years improved leaf greenness and leaf area index(LAI). But stomatal conductance(Gc) was higher in conventional cultivation system than no-till system. Stomatal conductance at panicle initiation stage was increased higher in conventional condition of leaves but the difference between conventional and no-till system was increased at heading stage. In no-till 4 years condition rice grain yield was spikelet numbers per panicle.

  • PDF

Effect of Soil Water Content on Growth, Photosynthetic Rate, and Stomatal Conductance of Kimchi Cabbage at the Early Growth Stage after Transplanting (정식 후 초기 생장기 배추의 생장, 광합성 속도 및 기공전도도에 미치는 토양수분의 영향)

  • Kim, Sung Kyeom;Lee, Hee Ju;Lee, Hee Su;Mun, Boheum;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • The objectives of this study were to determine the impact of soil water content on the growth, stomatal conductance, and photosynthesis of Kimchi cabbage and to evaluate proper parameters for development of growth models. There were five levels of irrigation amount treatments (0, 200, 300, 400, and 500 mL/d/plant) and those were commenced at one day after transplanting (DAT). We measured soil water content, stomatal conductance, photosynthesis characteristics, and the A-Ci curve. The growth of Kimchi cabbage as affected by irrigation amount was evaluated at 38 days after transplanting, however, the growth with 0 and 200 mL/d/plant irrigation amount treatments measured at 29 DAT. The relationship between soil water content and stomatal conductance was highly correlated ($r^2=0.999$) and the function represented by y = 6097.4x - 4.2984. The stomatal conductance of Kimchi cabbage leaves showed $300mmol{\cdot}m^{-2}{\cdot}s^{-1}$ when the soil water content was below $0.05m^3/m^3$. The stomatal conductance was rapidly decreased by scarcity of soil moisture. A-Ci curve indicated normal curve in fully irrigation treatment (500 mL/d/plant), however, $CO_2$ couldn't diffuse through the intercellular Kimchi cabbage leaves treated with 0 mL/d/plant. The dry weight of full irrigation treatment was greater approximately 6.8 times than that of deficit irrigation (0 mL/d/plant). In addition, leaf area index showed a logarithmic function (y = 16.573 + 3.398 ln x) with soil water content and that of R-squared represents 0.913. Results indicated that the soil water content was highly correlated with stomatal conductance and leaf area index. Indeed, the scarcity soil moisture reduced photosynthesis and retarded growth.

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves(II) - Characteristics of Stomatal Transpiration, Water Efficiency, Vapor Pressure Deficit of Leaves by the Light Intensity - (광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(II) - 광도변화에 따른 기공증산, 수분이용효율, 수증기압결핍 -)

  • Han, Sang-Sup;Jeon, Doo-Sik;Sim, Joo-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This research was carried out to elucidate the characteristics of stomatal transpiration, water efficiency, vapor pressure deficit of leaves by the light intensity Kalopanax pictus leaves. The results obtained are summarized as follows: 1. In the upper leaves of Kalopanax pictus seedlings, the stomatal transpiration rate increased continuously with increasing light intensity, but in the middle and lower leaves. it was saturated at $100{\mu}mol\;m^{-2}S^{-1}$. At the light saturated point. the stomatal transpiration rate was in the following order: the upper ($1.29mmol\;H_2O\;m^{-2}S^{-1}$) middle ($0.56mmol\;H_2O\;m^{-2}S^{-1}$) lower leaves ($0.31mmol\;H_2O\;m^{-2}S^{-1}$). 2. In the upper leaves, water use efficiency rapidly increased to $600{\mu}mol\;m^{-2}S^{-1}$, and then decreased. In the middle and lower leaves, it increased to $400{\mu}mmol\;m^{-2}S^{-1}$, and then showed a constant values. 3. The vapor pressure deficit (VPD) in according to leaf positions was linearly decreased with increasing photosynthetic photon flux density (PPFD).

  • PDF

Overexpression of OsNAC17 enhances drought tolerance in rice

  • Kim, Tae Hwan;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.168-168
    • /
    • 2017
  • Drought conditions during cultivation reduce agricultural production yield less than a theoretical maximum yield under normal condition. Plant specific NAC transcription factors in rice are known to play an essential roles in stress resistance transcriptional regulation. In this study, we report the rice (Oryza sativa L japonica) NAM, AFTF and CUC transcription factor OsNAC17, which is predominantly induced by abiotic stress in leaf, was contribute to the drought tolerance mediated reactive oxygen species (ROS) in transgenic rice plants. Constitutive (PGD1) promoter was introduced to overexpress OsNAC17 and produced the transgenic PDG1:OsNAC17. Overexpression of OsNAC17 throughout the whole plant improved drought resistance phenotype at the vegetative stage. Morphological characteristics such as grain yield, grain filling rate, and total grain weight improved by 22~64% over wild type plants under drought conditions during the reproductive stage. The improved drought tolerance in transgenic rice was involved in reducing stomatal density up to 15% than in wild type plants and in increasing reactive oxygen species-scavenging enzyme. DEG profiling experiment identified 119 up-regulated genes by more than twofold (P<0.01). These genes included UDP-glycosyltransferase family protein, similar to 2-alkenal reductase (NADPH-dependent oxireductase), similar to retinol dehydrogenase 12, Lipoxygenase, and NB-ARC domain containing protein related in cell death. Furthermore, OsNAC17 was act as a transcriptional activator, which has an activation domain in C-terminal region. These result demonstrate that the overexpression of OsNAC17 improve drought tolerance by regulating ROS scavenging enzymes and by reducing stomatal density

  • PDF

Evaluation of Stomatal Characteristics of Adaxial and Abaxial Side of Flag Leaves of Korean Wheat Cultivars

  • Seong-Wook Kang;Ji-Yoon Han;Chang Hyun Choi;Chon-Sik Kang;Swapan Kumar Roy;Seong-Woo Cho
    • Korean Journal of Plant Resources
    • /
    • v.36 no.3
    • /
    • pp.225-236
    • /
    • 2023
  • Stomatal traits such as stomata density (SD), aperture length (APL) and width (APW), guard cell length (GCL) and width (GCW), and distance between stomata (DIS) were investigated to identify correlation with agronomic traits for 35 Korean wheat cultivars. Flag leaf width (FLW) of Korean wheat cultivars was the widest in Ol-mil, and the narrowest in Keumkang. SD tended to be higher on the adaxial side than on the abaxial side in Korean wheat cultivars. SD of adaxial and abaxial sides was classified into a cultivar with a significantly different or not. In APL, 18 wheat cultivars showed significant differences according to leaf side, and APL of adaxial was longer than APL of abaxial in 13 wheat cultivars. In APW, 15 wheat cultivars showed a significant difference, and APW of abaxial was wider than APW of adaxial among them. In GCL, 14 wheat cultivars showed a significant difference, and the GCL of abaxial was longer than the GCL of adaxial in 10 wheat cultivars. In GCW, 10 wheat cultivars showed a significant difference, GCW of adaxial was wider than GCW of abaxial and in 6 wheat cultivars. FLW of adaxial and abaxial showed a negative correlation with GCL and a positive correlation with grain number per panicle. FLW of only abaxial showed a positive correlation with DIS. The SD of the adaxial showed a negative correlation with GCL, while the SD of the abaxial showed a negative correlation with APL. APL of both sides of the leaf showed a positive correlation with GCL, and APW of only abaxial showed a negative correlation with GLC. DIS of adaxial showed a negative correlation with tiller number (TN), while DIS of abaxial showed a positive correlation with GNP.

What are the Possible Roles of CO2 on Stomatal Mechanism? (기공 메커니즘에 대한 CO2의 역할은 무엇인가?)

  • Lee, Joon Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • How does $CO_2$ affect on the stomatal mechanism? The mechanism of stomatal opening by $CO_2$ is not clear as it is difficult to see $CO_2$ effect on light-induced stomatal opening. Furthermore, stomata may react differently according to the concentration of $CO_2$. The significance of the possible endogenous rhythms must consider to understand on $CO_2$-related response. It is clear that $CO_2$ has an effect on the accumulation of osmotic materials which determines the degree of stomatal apertures because it is known that stomata open in the condition of the reduced $CO_2$ concentration. However, it is not fully understood how $CO_2$ leads to the stomatal opening. It has been thought that $CO_2$ can not affect on the ion fluxes which determines the increase of osmotic potential in guard cells. However, in this study, the changes of guard cell membrane permeability by $CO_2$ have been focused on. There are many reports that $CO_2$ related reactions are dominant when the leaf is exposed to certain a mount of $CO_2$. The hypothesis of the stomatal opening by light is based on the increase of osmotic materials in guard cells including $K^+$, $Cl^-$, sucrose and $malate^{2-}$. It was reported that $CO_2$ induced a big hyperpolarization indicating that $H^+$ was extruded to the cell outside. It was also found that $CO_2$ caused guard cell membrane hyperpolarization in the intact leaf up to 3 or 4 times higher than that of light induced membrane hyperpolarization. These results represent that $CO_2$ can affect on the change of physical characteristics which affects on the change of the membrane permeability.