DOI QR코드

DOI QR Code

Evaluation of Stomatal Characteristics of Adaxial and Abaxial Side of Flag Leaves of Korean Wheat Cultivars

  • Seong-Wook Kang (Department of GreenBio Science, Gyeongsang National University) ;
  • Ji-Yoon Han (Department of Smart Agro-Industry, Gyeongsang National University) ;
  • Chang Hyun Choi (National Institute of Crop Science, Rural Development Administration) ;
  • Chon-Sik Kang (National Institute of Crop Science, Rural Development Administration) ;
  • Swapan Kumar Roy (College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology) ;
  • Seong-Woo Cho (Department of GreenBio Science, Gyeongsang National University)
  • Received : 2022.11.01
  • Accepted : 2022.12.29
  • Published : 2023.06.01

Abstract

Stomatal traits such as stomata density (SD), aperture length (APL) and width (APW), guard cell length (GCL) and width (GCW), and distance between stomata (DIS) were investigated to identify correlation with agronomic traits for 35 Korean wheat cultivars. Flag leaf width (FLW) of Korean wheat cultivars was the widest in Ol-mil, and the narrowest in Keumkang. SD tended to be higher on the adaxial side than on the abaxial side in Korean wheat cultivars. SD of adaxial and abaxial sides was classified into a cultivar with a significantly different or not. In APL, 18 wheat cultivars showed significant differences according to leaf side, and APL of adaxial was longer than APL of abaxial in 13 wheat cultivars. In APW, 15 wheat cultivars showed a significant difference, and APW of abaxial was wider than APW of adaxial among them. In GCL, 14 wheat cultivars showed a significant difference, and the GCL of abaxial was longer than the GCL of adaxial in 10 wheat cultivars. In GCW, 10 wheat cultivars showed a significant difference, GCW of adaxial was wider than GCW of abaxial and in 6 wheat cultivars. FLW of adaxial and abaxial showed a negative correlation with GCL and a positive correlation with grain number per panicle. FLW of only abaxial showed a positive correlation with DIS. The SD of the adaxial showed a negative correlation with GCL, while the SD of the abaxial showed a negative correlation with APL. APL of both sides of the leaf showed a positive correlation with GCL, and APW of only abaxial showed a negative correlation with GLC. DIS of adaxial showed a negative correlation with tiller number (TN), while DIS of abaxial showed a positive correlation with GNP.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ015964032022)" Rural Development Administration, Republic of Korea.

References

  1. Baloch, M.J., J. Dunwell, N.U. Khan, W.A. Jatoi, A.A. Khakhwani, N.F. Vessar and S. Gul. 2013. Morpho-physiological characterization of spring wheat genotypes under drought stress. Int. J. Agric. Biol. 15:945-950.
  2. Bertolino, L.T., R.S. Caine and J.E. Gray. 2019. Impact of stomatal density and morphology on water-use efficiency in a changine world. Front. Plant Sci. 10:225.
  3. Bi, H., N. Kovalchuk, P. Langridge, P.J. Tricker, S. Lopato and N. Borisjuk. 2017. The impact of drought on wheat leaf cuticle properties. BMC Plant Biol. 17:85.
  4. Biswal, A.K. and A. Kohli. 2013. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol. Breed. 31:749-66. https://doi.org/10.1007/s11032-013-9847-7
  5. Cattivelli, L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Mare, A. Tondelli and A.M. Stanca. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field crops Res. 105:1-14. https://doi.org/10.1016/j.fcr.2007.07.004
  6. Doheny-Adams, T., L. Hunt, P.J. Franks, D.J. Beerling and J.E. Gray. 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Phil. Trans. R. Soc. B. 367:547-555. https://doi.org/10.1098/rstb.2011.0272
  7. Dunn, J., L. Hunt, M. Afsharinafar, M.A. Meselmani, A. Mitchell, R. Howells, E. Wallington, A.J. Fleming and J.E. Gray. 2019. Reduced stomatal density in bread wheat leads to increased water-use efficiency. J. Exper. Botany 70:4737-4747. https://doi.org/10.1093/jxb/erz248
  8. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita and S. M.A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29:185-212. https://doi.org/10.1051/agro:2008021
  9. Hetherington, A.M. and F.I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901-908. https://doi.org/10.1038/nature01843
  10. IPCC. 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Stocker, T.F., D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.), Cambridge University Press, NY (USA).
  11. Jung, I.H., N.B. Park, S.Y. Kim, Y.E. Na and S.I. Kim. 2014. Screening methods for plant-coating materials and transpiration inhibitory effect of soybean oil to crops. Korean J. Plant Res. 27:380-391. https://doi.org/10.7732/kjpr.2014.27.4.380
  12. Kazemi, H., S.R. Chapman and F.H. McNeal. 1978. Variation in stomatal number in spring wheat cultivars. Cereal Res. Commun. 6:359-365.
  13. Liu, K., H. Xu, G. Liu, P. Guan, X. Zhou, H. Peng, Y. Yao, Z. Ni, Q. Sun and J. Du. 2018. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor. Appl. Genet. 131:839-849. https://doi.org/10.1007/s00122-017-3040-z
  14. Monyo, J.H. and W.J. Whittington. 1973. Genotypic differences in flag leaf area and their contribution to grain yield in wheat. Euphytica 22:600-606. https://doi.org/10.1007/BF00036661
  15. Naeem, M., A. Hussain, U.R. Azmi, S. Maqsood, U. Imtiaz, H. Ali and U. Ghani. 2019. Comparative anatomical studies of epidermis with different stomatal patterns in some selected plants using compound light microscopy. Int. J. Sci. Res. 9:375-380. https://doi.org/10.29322/IJSRP.9.10.2019.p9449
  16. Oh, S.Y., J.H. Seo, J. Choi and H. Oh. 2022. Effects of pre-cropping with rice (Oryza sativa L.) alternative crops on grain yield and flour quality of winter wheat (Triticum aestivum L. 'Jokyung') on the paddy fields. Korean J. Plant Res. 35:686-695.
  17. Ouyang, W., P.C. Struik, X. Yin and J. Yang. 2017. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J. Exper. Botany 68:5191-5205. https://doi.org/10.1093/jxb/erx314
  18. Pillitteri, L.J. and K.U. Torii. 2012. Mechanisms of stomatal development. Annu. Rev. Plant Biol. 63:591-614. https://doi.org/10.1146/annurev-arplant-042811-105451
  19. Rahim, F.P., T.T.M. Alejandra, Z.V.V. Manuel, T.R.J. Elias and N.H. Maginot. 2021. Stomatal traits and barley (Hordeum vulgare L.) forage yield in drought conditions of Northeastern Mexico. Plants 10:1318.
  20. Rauf, M., M. Munir, M.U. Hassan, M. Ahmad and M. Afzal. 2007. Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afri. J. Biotechnol. 6:971-975.
  21. RDA. 2012. Standard of Research and Analysis for Agricultural Technology. Rural Development Administration, Jeonju, South Korea. pp. 339-365.
  22. Shahinnia, F., J.L. Roy, B. Laborde, B. Sznajder, P. Kalambettu, S. Mahjourimajd, J. Tilbrook and D. Fleury. 2016. Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol. 16:1-14. https://doi.org/10.1186/s12870-015-0700-5
  23. Teare, I.D., C.J. Peterson and A.G. Law. 1971. Size and frequency of leaf stomata in cultivars of Triticum aestivum and other Triticum species. Crop. Sci. 11:496-498. https://doi.org/10.2135/cropsci1971.0011183X001100040010x
  24. Verma, K.K., X.P. Song, Y. Zeng, D.M. Li, D.J. Guo, V.D. Rajput, G.L. Chen, A. Barakhov, T.M. Minkina and Y.R. Li. 2020. Characteristics of leaf stomata and their relationship with photosynthesis in Saccarum officinarum under drought and silicon application. ACS Omega 5:24145-24153. https://doi.org/10.1021/acsomega.0c03820
  25. Verma, V., M.J. Foulkes, A.J. Worland, R. Sylvester-Bradley, P.D.S. Caligari and J.W. Snape. 2004. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255-63. https://doi.org/10.1023/B:EUPH.0000013255.31618.14
  26. Xu, Z. and G. Zhou. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exper. Botany 59:3317-3325. https://doi.org/10.1093/jxb/ern185
  27. Yoon, E.S. 1999. Effect of simulated acid rain on water status of Pinus densiflora and P. koraiensis. Korean J. Plant. Res. 12:10-19.
  28. Zeuli, P.L.S. and C.O. Qualset. 1990. Flag leaf variation and the analysis of diversity in durum wheat. Plant Breed. 105:189-202. https://doi.org/10.1111/j.1439-0523.1990.tb01196.x
  29. Zheng, Y., M. Xu, R. Hou, R. Shen, S. Qiu and Z. Ouyang. 2013. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecol. Evol. 3:3095-3111. https://doi.org/10.1002/ece3.674