• Title/Summary/Keyword: stoichiometric air ratio

Search Result 71, Processing Time 0.018 seconds

Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio (연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구)

  • Hwang, Yu-Hyeon;Jung, Dong-Ho;Kim, Sun-Min;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.835-841
    • /
    • 2010
  • The design of the fuel injector is one of the important operating factors that determine the extent of mixing of air and fuel in an MEMS gas turbine engine. In this study, we consider a system with three inlet ports with each port having multiple injectors. We perform a parametric study by varying the arrangement of fuel injectors and difference of ratio of fuel supply. The results are presented in terms of the premixed flow distribution and equivalence ratio.

An Experimental Study on the Combustion Characteristics of a Low NOx Burner Using Reburning Technology

  • Ahn, Koon-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Ho-Keun;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.950-958
    • /
    • 2002
  • The combustion characteristics of a low NOx burner using reburning technology have been experimentally studied. The return burner usually has three distinct reaction zones which include the primary combustion zone, the reburn zone and the burnout zone by provided secondary air. NOx is mainly produced in a primary combustion zone and a certain portion of NOx can be converted to nitrogen in the rebury zone. In the burnout zone, the unburned mixtures are completely oxidated by supplying secondary air. Liquefied Petroleum Gas (LPG) was used as main and reburn fuels. The experimental parameters investigated involve the main/reburn fuel ratio, the primary/secondary air ratio, and the injection location of rebury fuel and secondary air. When the amount of return fuel reaches to the 20-30% of the total fuel used, the overall NO reduction of 50% is achieved. The secondary air is injected by two different ways including vertical and parallel injection. The injector of secondary air is located at the downstream region of furnace for a vertical-injection mode, which is also placed at the inlet primary-air injection region for a parallel-injection mode. In case of the vertical injection of the secondary air flow, the NOx formation of stoichiometric condition at a primary combustion zone is nearly independent of the rebury conditions (locations, fuel/air ratios) while the NOx emission of the fuel-lean condition is considerably influenced by the reburn conditions. In case of the parallel injection of the secondary air, the NOx emission is sensitive to the air ratio rather than the fuel ratio and the reburning process often coupled with the multiple air-staging and fuel-staging combustion processes.

Effects of Port Masking on fart Load Performance: Part II - Emission and Fuel Economy (포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part II - 배기 및 연비특성)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.23-29
    • /
    • 2001
  • This paper is the second of companion papers, which investigate port-masking effects on emission and fuel economy. Port-masking was applied to commercial SOHC 3-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. In this paper, main interest is focused on the influence of injection timing on emission and fuel economy. Various injection timing was applied to the six cases, under the stoichiometric and lean-limit air-fuel ratio. Under the stoichiometric condition, an explanation about the reason of the change in emission level due to injection timing change is given. It is observed that NOx emission under the LML condition varies significantly when the injection timing changes.

  • PDF

A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge (균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구)

  • 이내현;유철호;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

The Performance and Emission of the Intake Port Injection Type Hydrogen Fueled Engine (흡기관 분사 방식 수소 연료 기관의 성능 및 배출물에 관한 연구)

  • 이형승;이석재;이종화;유재석;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-33
    • /
    • 1993
  • Using the solenoid driven gas injection valve, Hydrogen fuel supply system was made. It was attached to a single cylinder research engine and intake port injection type hydrogen fueled S.I. engine was constructed. Engine performance, emission characteristics, and abnormal combustion were studied through the engine test performed with the variations of fuel-air equivalence ratio and spark timing. Compared with gasoline, hydrogen burns so fast that cylinder peak pressure and temperature are higher and NO is emitted more at full load condition. IN the case of intake port injection type engine, COVimep becomes lower due to the well-mixing of air and fuel, and engine output is lower owing to the low volumetric efficiency. As fuel-air equivalence ratio goes up, the combustion speed increases, and COVimep decreases. NO emission peaks slightly lean of stoichiometric. As spark timing advances and fuel-air equivalence ratio goes up, the cylinder peak pressure and temperature become higher, so abnormal combustions take place easily.

  • PDF

Effect of Equivalence Ratio on the Combustion Characteristics in a CI Engine Fueled with Biodiesel (바이오디젤 연료 압축착화 엔진의 당량비 변화가 연소 및 배출물특성에 미치는 영향)

  • Kang, Min-Gu;Kwon, Seok-Joo;Cha, June-Pyo;Lim, Young-Kwan;Park, Sung-Wook;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • The purpose of this paper is to investigate the effect of equivalence ratio on the combustion and emission characteristics of a compression ignition engine fueled with biodiesel. In this research, a single-cylinder direct injection engine with 373.3 cc of displacement volume was tested on DC dynamometer. In order to investigate the effect of biodiesel equivalence ratio on combustion characteristics, the experiments were conducted at various equivalence ratios and injection pressures of 40~120 MPa. For investigating engine performance, lambda meter was connected and equivalence ratios was varied from 0.6 to 1.0. In addition, the exhaust emissions such as oxides of nitrogen($NO_X$), hydrocarbon(HC) and carbon monoxide(CO) were measured by exhaust gas analyzer under the various air/fuel ratios. The experimental results show that maximum IMEP was measured at the 0.8 of equivalence ratio. Furthermore, $NO_X$ emission was rapidly decreased as the increase of equivalence ratio. However soot emission was significantly increased according to the increase of equivalence ratio.

Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS (초소형 연소기에서의 연소 현상 실험적 연구)

  • 나한비;김세훈;최원영;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

Combustion Characteristics and Criterion of Quenching Condition in Micro Combustor Parameterized by Initial Pressure and Fuel in the Combustor (초기 압력과 연료특성에 따른 마이크로 연소기 내에서의 연소 특성 및 소염 조건 변화)

  • Na, Han-Bee;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.55-62
    • /
    • 2005
  • Combustion Characteristics and quenching criteria of micro combustor in various condition was exploited experimentally. Two different gases were used, and various geometric matrixes were considered to figure out quenching characteristic of micro combustor. The micro combustor studied in this study was constant volume, and has cylindrical shape. Geometric parameter of combustor was defined to be combustor height and diameter. The effect of height was exploited parametrically as 1 mm, 2mm and 3mm and the effect of diameter was parameterized to be 7.5mm and 15mm. Three different combustibles. (1) Stoichiometric mixture of methane and are, (2) Stoichiometric mixture of hydrogen and air and (3) Mixture of hydrogen and air with fuel stoichiometry of two were used. Pressure transition during combustion process was recovered. The ratio of maximum pressure to initial pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was observed only when a specific condition was satisfied. From the experiment the condition that guarantees stable propagation of flame was tabulated. The tabulated results includes criteria of quenching according to combustor height, combustor diameter, species of fuel and initial pressure.

The Effects of Combustion Parameters on the Characteristics of a Steam-Methane Reformer (연소 변수가 수증기-메탄 개질기의 특성에 미치는 영향)

  • Lee, Jae-Seong;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.29-31
    • /
    • 2012
  • The effects of combustion parameters on the characteristics of a steam-methane reformer. The reformer system was numerically simulated using a simplified two-dimensional axisymmetric model domain with an appropriate user-defined function. The fuel ratio, defined as the ratio of methane flow rate in the combustor to that in the reactor, was varied from 20 to 80%. The equivalence ratio was changed from 0.5 to 1.0. The results indicated that as the fuel ratio increased, the production rates of hydrogen and carbon monoxide increased, although their rates of increase diminished. In fact, at the highest heat supply rates, hydrogen production was actually slightly decreased. Simulations showed that equivalence ratio of 0.7 yielded the highest steam-methane mixture temperature despite a 43% higher air flow rate than the stoichiometric flow rate. This means that the production of hydrogen and carbon monoxide can be increased by adjusting the equivalence ratio, especially when the heat supply is insufficient.

  • PDF

Study on the Partially Premixed Flames Produced by a Coflow Burner as Temperature Calibration Source (동축류 버너에서 생성된 부분 예혼합 화염을 이용한 화염 온도 측정 검정원 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • We investigated a uniform temperature zone, produced by double flame structure of a co flow CH4/air partially premixed flame, to be used as a temperature calibration source for laser diagnostics. A broadband N2 CARS(coherent anti-Stokes Raman spectroscopy) system with a modeless laser was used for temperature measurement. When the stoichiometric ratio was 1.5, we found the uniform temperature zone in radial direction of the flame of which the averaged temperature was 2110 K with standard deviation 24 K. In the stoichiometric ratio range between 2.0 and 2.5, we found very stable temperature-varying zones in vertical direction at the center of the flame. The size of the zone was approximately 15 mm and it covered a temperature range from 300 K to 1900 K. We also suggest that this zone can be used as a calibration source for 2-D PLIF(planar laser induced flurescence) temperature measurement.

  • PDF