• Title/Summary/Keyword: stochastic variance

Search Result 152, Processing Time 0.02 seconds

Optimizing Portfolio Weights for the First Degree Stochastic Dominance with Maximum Utility (1차 확률적 지배를 하는 최대효용 포트폴리오 가중치의 탐색에 관한 연구)

  • Ryu, Choonho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.1
    • /
    • pp.113-127
    • /
    • 2014
  • The stochastic dominance approach is to form a portfolio that stochastically dominates a predetermined benchmark portfolio such as KOSPI. This study is to search a set of portfolio weights for the first-order stochastic dominance with maximum utility defined in terms of mean and variance by managing the constraint set and the objective function in an iterative manner. A nonlinear programming algorithm was developed and tested with promising results against Korean stock market data sets.

Stochastic elastic wave analysis of angled beams

  • Bai, Changqing;Ma, Hualin;Shim, Victor P.W.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.767-785
    • /
    • 2015
  • The stochastic finite element method is employed to obtain a stochastic dynamic model of angled beams subjected to impact loads when uncertain material properties are described by random fields. Using the perturbation technique in conjunction with a precise time integration method, a random analysis approach is developed for efficient analysis of random elastic waves. Formulas for the mean, variance and covariance of displacement, strain and stress are introduced. Statistics of displacement and stress waves is analyzed and effects of bend angle and material stochasticity on wave propagation are studied. It is found that the elastic wave correlation in the angled section is the most significant. The mean, variance and covariance of the stress wave amplitude decrease with an increase in bend angle. The standard deviation of the beam material density plays an important role in longitudinal displacement wave covariance.

Maximum-Likelihood Estimation using a Variance-Covariance Relationship of Stochastic elements within a panel (패널내 추계적 요인들의 공분산 관계에 의한 최우추정)

  • 이회경;이진우
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.29-41
    • /
    • 1994
  • This paper analyses the stochastic nature of the Permanent Income Hypothesis (PIH) by specifying the variance-covariance structure of PIH based on Hall and Mishkin[3]. Maximum likelihood is employed to estimate the model by explicitely incorporating the heteroscedastic nature of the data into the likelihood. The data used are individual Korean household consumption and income data. The results indicate that the data are generally consistent with the Permanent Income Hypothesis, and about 11 percent of the total variation in consumption may be attributable to the excess sensitivity of consumption to income.

  • PDF

An Efficient Algorithm to Find Portfolio Weights for the First Degree Stochastic Dominance with Maximum Expected Return (1차 확률적 지배를 하는 최대수익 포트폴리오 가중치의 탐색에 관한 연구)

  • Ryu, Choon-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.153-163
    • /
    • 2009
  • Unlike the mean-variance approach, the stochastic dominance approach is to form a portfolio that stochastically dominates a predetermined benchmark portfolio such as KOSPI. This study is to search a set of portfolio weights for the first-order stochastic dominance with maximum expected return by managing the constraint set and the objective function separately. A nonlinear programming algorithm was developed and tested with promising results against Korean stock market data sets.

Supply Function Nash Equilibrium Considering Stochastic Demand Function (확률적 수요함수를 고려한 공급함수의 전략변수 내쉬균형 연구)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.20-24
    • /
    • 2008
  • A bid-based pool(BBP) model is representative of energy market structure in a number of restructured electricity markets. Supply function equilibrium(SFE) models of interaction better match what is explicitly required in the bid formats of typical BBP markets. Many of the results in the SFE literature involve restrictive parametrization of the bid cost functions. In the SFE models, two parameters, intercept and slope, are available for strategic bidding. This paper addresses the realistic competition format that players can choose both parameters arbitrarily. In a fixed demand function, equilibrium conditions for generation company's profit maximization have a degree of freedom, which induces multi-equilibrium. So it is hard to choose a convergent equilibrium. However, consideration of stochastic demand function makes the equilibrium conditions independent each other based on the amount of variance of stochastic demand function. This variance provides the bidding players with incentives to change the slope parameter from an equilibrium for a fixed demand function until the slope parameter equilibrium.

OPTION PRICING UNDER STOCHASTIC VOLATILITY MODEL WITH JUMPS IN BOTH THE STOCK PRICE AND THE VARIANCE PROCESSES

  • Kim, Ju Hong
    • The Pure and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.295-305
    • /
    • 2014
  • Yan & Hanson [8] and Makate & Sattayatham [6] extended Bates' model to the stochastic volatility model with jumps in both the stock price and the variance processes. As the solution processes of finding the characteristic function, they sought such a function f satisfying $$f({\ell},{\nu},t;k,T)=exp\;(g({\tau})+{\nu}h({\tau})+ix{\ell})$$. We add the term of order ${\nu}^{1/2}$ to the exponent in the above equation and seek the explicit solution of f.

Stochastic Volatility Model vs. GARCH Model : A Comparative Study (확률적 변동성 모형과 자기회귀이분산 모형의 비교분석)

  • 이용흔;김삼용;황선영
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.217-224
    • /
    • 2003
  • The volatility in the financial data is usually measured by conditional variance. Two main streams for gauging conditional variance are stochastic volatility (SV) model and autoregressive type approach (GARCH). This article is conducting comparative study between SV and GARCH through the Korean Stock Prices Index (KOSPI) data. It is seen that SV model is slightly better than GARCH(1,1) in analyzing KOSPI data.

DEELOPMENTS IN ROBUST STOCHASTIC CONTROL;RISK-SENSITIVE AND MINIMAL COST VARIANCE CONTROL

  • Won, Chang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.107-110
    • /
    • 1996
  • Continuing advances in the formulation and solution of risk-sensitive control problems have reached a point at which this topic is becoming one of the more intriguing modern paradigms of feedback thought. Despite a prevailing atmosphere of close scrutiny of theoretical studies, the risk-sensitive body of knowledge is growing. Moreover, from the point of view of applications, the detailed properties of risk-sensitive design are only now beginning to be worked out. Accordingly, the time seems to be right for a survey of the historical underpinnings of the subject. This paper addresses the beginnings and the evolution, over the first quarter-century or so, and points out the close relationship of the topic with the notion of optimal cost cumulates, in particular the cost variance. It is to be expected that, in due course, some duality will appear between these notions and those in estimation and filtering. The purpose of this document is to help to lay a framework for that eventuality.

  • PDF

Optimizing Portfolio Weights for the First Degree Stochastic Dominance with Maximum Expected Return (1차 확률적 지배를 하는 최대수익 포트폴리오 가중치의 탐색에 관한 연구)

  • Ryu, Choon-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.134-137
    • /
    • 2007
  • Unlike the mean-variance approach, the stochastic dominance approach is to form a portfolio that stochastically dominates a predetermined benchmark portfolio such as KOSPI. This study is to search a set of portfolio weights for the first degree stochastic dominance with maximum expected return by managing the constraint set and the objective function separately. An algorithm was developed and tested with promising results against Korean stock market data sets.

  • PDF

An Algorithm to Optimize Portfolio Weights for the First Degree Stochastic Dominance (1차 확률적 지배를 하는 포트폴리오 가중치의 탐색에 관한 연구)

  • 류춘호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.1
    • /
    • pp.25-36
    • /
    • 2003
  • Unlike the mean-variance approach, the stochastic dominance approach Is to form a portfolio that first-degree stochastically dominates a predetermined benchmark portfolio, e.g. KOSPI. Analytically defining the first derivative of the objective function, an optimal algorithm of nonlinear programming was developed to search a set of optimal weights systematically and tested with promising results against veal data sets from Korean stock market.