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OPTION PRICING UNDER STOCHASTIC VOLATILITY MODEL
WITH JUMPS IN BOTH THE STOCK PRICE AND THE

VARIANCE PROCESSES

Ju Hong Kim

Abstract. Yan & Hanson [8] and Makate & Sattayatham [6] extended Bates’
model to the stochastic volatility model with jumps in both the stock price and
the variance processes. As the solution processes of finding the characteristic func-
tion, they sought such a function f satisfying

f(`, ν, t; k, T ) = exp (g(τ) + νh(τ) + ix`) .

We add the term of order ν1/2 to the exponent in the above equation and seek the
explicit solution of f .

1. Introduction

The Heston model [5] is the following risk-neutral stock price processes

dSt = rStdt +
√

νtStdWS
t ,(1.1a)

dνt = κ(θ − νt)dt + σv
√

νtdW ν
t ,(1.1b)

where St is a stock process, r is the riskless rate of return, νt is the volatility of asset
returns, κ > 0 is a mean-reverting rate, θ is the long term variance, σ > 0 is the
volatility of volatility, and WS

t and W ν
t are two correlated Brownian motions under

the risk-neutral measure with constant correlation coefficient ρ.
The Bates [1] extended the Heston model (1.1) to include jumps in the stock

price process. The model has the following dynamics which define the evolution of
St satisfying

dSt = (r − λSm)Stdt +
√

νtStdWS
t + St−YtdNS

t ,(1.2a)

dνt = κ(θ − νt)dt + σv
√

νtdW ν
t ,(1.2b)
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where the volatility process νt is the same as one in the Heston model and the driving
Brownian motions in the two processes have an instantaneous correlation coefficient
ρ, the process NS

t represents a Poisson process under the risk-neutral measure, with
jump intensity λ. The Poisson process is independent of the two Brownian motions
in the stock price and the variance processes. The percentage jump size of the stock
price is denoted by the random variable Yt with log-normal distribution.

Eraker et al. [3] extended Bates model to a stochastic volatility model with con-
temporaneous jumps in the stock price and its volatility

dSt = (r − λSm)Stdt +
√

νtStdWS
t + St−YtdNS

t ,

dνt = κ(θ − νt)dt + σ
√

νtdW ν
t + ZtdNν

t .

Eraker et al. tested their model with empirical data and showed that the models
with jumps performed better than those without jumps in volatility. Makate and
Sattayatham [6] provide a formal ’closed-form solution’ of the stochastic-volatility
jump-diffusion model.

Heston’s [5] ’closed-form solution’ for risk-neutral pricing of European options is
given by first converting the problem into characteristic functions, then using the
Fourier inversion formula for probability distribution functions to find a more numer-
ically robust form which everyone won’t call it closed. To solve for the characteristic
function fj explicitly, Yan & Hanson [8] and Makate & Sattayatham [6] conjecture
that its solution is given by

fj(`, ν, t; x, t + τ) = exp(gj(τ) + νhj(τ) + ix` + βj(τ))(1.3)

where β1(τ) = 0 and β2(τ) = rτ . In this paper, we add the term of order ν1/2 to
the exponent in (1.3) for the exploit of nonlinearity and seek the explicit solution of
fj .

This paper is structured as follows. The introduction is given in Section 1. The
stochastic-volatility jump-diffusion model is explained in detail in Section 2. The
formulation for European call option pricing is given in Section 3.

2. Stochastic-volatility Jump-diffusion Model

We assume that a risk-neutral probability measure Q exists. We also assume
that the asset price St under Q follows a jump- diffusion process, and the volatility
νt follows a pure mean-reverting and square root diffusion process with jump, e.g.,
our model is governed by the following dynamics
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dSt = (r − λSm)Stdt +
√

νtStdWS
t + St−YtdNS

t ,(2.1a)

dνt = κ(θ − νt)dt + σ
√

νtdW ν
t + ZtdNν

t .(2.1b)

where St, νt, κ, θ, σ, WS
t , W ν

t are the same ones defined as in Bates model (1.2), r is
a risk-free interest rate, NS

t and Nν
t are independent Poisson processes with constant

intensities λS and λν respectively. Yt is the jump size of the asset price return with
density φY (y) and E[Yt] = m, and Zt is the jump size of the volatility with density
φZ(z). Moreover, we assume that the Poisson processes NS

t and Nν
t are independent

of standard Brownian motions WS
t and W ν

t with Corr(dWS
t , dW ν

t ) = ρ.

3. Formulation for European Call Option Pricing

Let C denote the price at time t of a European style call option on St with strike
price K and expiration time T . The terminal payoff of a European call option on
the underlying stock St is

max{ST −K, 0}.
Assume that the short-term risk-free interest rate r is constant over the lifetime
of the option. The price of the European call at time t equals the discounted and
conditional expected payoff

C(St, νt, t; K, T ) = e−r(T−t)EQ

[
max(St −K, 0)

∣∣∣St, νt

]

= e−r(T−t)

(∫ ∞

K
ST PQ(ST |St, νt) dST −K

∫ ∞

K
PQ(ST |St, νt) dST

)

= St

(
1

er(T−t)St

∫ ∞

K
ST PQ(ST |St, νt) dST

)

−Ke−r(T−t)

∫ ∞

K
PQ(ST |St, νt) dST

= St

(
1

EQ[ST |St, νt]

∫ ∞

K
ST PQ(ST |St, νt) dST

)

−Ke−r(T−t)

∫ ∞

K
PQ(ST |St, νt) dST

= StP1(St, νt, T ; K, T )−KP2(St, νt, T ; K,T ),(3.1)

where EQ is the expectation with respect to the risk-neutral probability measure Q

and PQ(ST |St, νt) is the corresponding conditional density function given (St, νt).
Since ∫ ∞

0
ST PQ(ST |St, νt)dST = EQ[ST |St, νt],
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P1(St, νt, T ; K,T ) =
1

EQ[ST |St, νt]

∫ ∞

K
ST PQ(ST |St, νt) dST

is a risk-neutral probability such that

ST > K, EQ[ST |St, νt] = er(T−t)St.

P2(St, νt, T ;K,T ) = ProbQ(ST > K|St, νt) is the risk-neutral in-the-money proba-
bility. Note that the complement of P2 is a risk-neutral distribution function. It
is difficult to find the cumulative distribution function in European option pricing.
The main job is to evaluate P1 and P2 under the distribution assumptions embedded
in the risk-neutral probability measure.

We make a change of variable from St to Lt = lnSt. Let k = lnK. By the
jump-diffusion chain rule, lnSt satisfies the SDE

d ln St =
(
r − λSm− νt

2

)
dt +

√
νtdWS

t + ln(1 + Yt)dNS
t .(3.2)

The value C of a European-style option as a function of Lt becomes

C(St, νt, t;K, T ) = C(eln St , νt, t; eln K , T )

= C(eLt , νt, t; ek, T )

:= C̃(Lt, νt, t; k, T ),

that is, we have

C̃(`, ν, t; k, T ) = e−r(T−t)EQ

[
max{eLT −K, 0}|Lt = `, νt = ν

]
.

The Dynkin’s theorem [4] shows a relationship between stochastic differential equa-
tions and partial differential equations. If we apply two-dimensional Dynkin’s theo-
rem for the price dynamics (3.2) and volatility νt in (2.1b) to C̃(Lt, νt, t; k, T ), then
we obtain the following Partial Integro-Differential Equations (PIDE)

0 =
∂C̃

∂t
+ Ā[C̃](`, νt, t; k, T )

+λS

∫

R

[
C̃(` + y, ν, t; k, T )− C̃(`, ν, t; k, T )

]
φY (y)dy

+λν

∫

R

[
C̃(`, ν + z, t; k, T )− C̃(`, ν, t; k, T )

]
φZ(z)dz,

where Ā is defined as

Ā[C̃](`, ν, t; k, T ) =
(

r − λSm− 1
2
ν

)
∂C̃

∂`
+ κ(θ − ν)

∂C̃

∂ν
+

ν

2
∂2C̃

∂`2

+ρσν
∂2C̃

∂`∂ν
+

1
2
σ2ν

∂2C̃

∂ν2
− rC̃.
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In the current state variables Lt = ` and νt = ν, the option value (3.1) becomes

C̃(`, ν, t; k, T ) = e`P̃1(`, ν, t; k, T )− ek−r(T−t)P̃2(`, ν, t; k, T ),(3.3)

where P̃j(`, ν, t; k, T ) := Pj(e`, ν, t; ek, T ) for j = 1, 2.

Lemma 3.1 ([6]). The functions P̃1 in (3.3) satisfies the following PIDEs

0 =
∂P̃1

∂t
+A[P̃1](`, ν, t; k, T ) + ν

∂P̃1

∂`
+ ρσν

∂P̃1

∂ν
+ (r − λSm)P̃1

+λS

∫

R

[
(ey − 1)P̃1(` + y, ν, t; k, T )

]
φY (y)dy

:=
∂P̃1

∂t
+A1[P̃1](`, ν, t; k, T ),(3.4)

with the boundary condition at expiration time t = T

P̃1(`, ν, T ; k, T ) = I`>k.

P̃2 in (3.3) also satisfies the following PIDEs

0 =
∂P̃2

∂t
+A[P̃2](`, ν, t; k, T ) + rP̃2 :=

∂P̃2

∂t
+A2[P̃1](`, ν, t; k, T ),(3.5)

with the boundary condition at expiration time t = T

P̃2(`, ν, T ; k, T ) = I`>k.

A1 and A2 in Lemma 3.1 are respectively defined as

A1[f ](`, ν, t; k, T ) =
(

r − λSm +
1
2
ν

)
∂f

∂`
+ (κ(θ − ν) + ρσν)

∂f

∂ν
+

ν

2
∂2f

∂`2

+ρσν
∂2f

∂`∂ν
+

1
2
σ2ν

∂2f

∂ν2
− λSmf + λS

∫

R
[(ey − 1)f(` + y, ν, t; k, T )]φY (y)dy

+λS

∫

R
[f(` + y, ν, t; k, T )− f(`, ν, t; k, T )]φY (y)dy

+λν

∫

R
[f(`, ν + z, t; k, T )− f(`, ν, t; k, T )]φZ(z)dz,

and

A2[f ](`, ν, t; k, T ) =
(

r − λSm− 1
2
ν

)
∂f

∂`
+ κ(θ − ν)

∂f

∂ν
+

ν

2
∂2f

∂`2

+ρσν
∂2f

∂`∂ν
+

1
2
σ2ν

∂2f

∂ν2

+λS

∫

R
[f(` + y, ν, t; k, T )− f(`, ν, t; k, T )]φY (y)dy

+λν

∫

R
[f(`, ν + z, t; k, T )− f(`, ν, t; k, T )]φZ(z)dz.
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For j = 1, 2 the characteristic functions for P̃j(`, ν, t; k, T ) with respect to the
variable k are defined as

fj(`, ν, t; k, T ) := −
∫ ∞

−∞
eixkdP̃j(`, ν, t; k, T ),

in which a minus sign is given to account for the negativity of the measure dP̃j . For
j = 1, 2, fj satisfies similar PIDEs as in (3.4) and (3.5)

∂fj

∂t
+Aj [fj ](`, ν, t; k, T ) = 0,(3.6)

with the boundary conditions

fj(`, ν, T ; k, T ) = −
∫ ∞

−∞
eixkdP̃j(`, ν, T ; k, T )

= −
∫ ∞

−∞
eixk(−δ(k − `)dk) = eix`,

since dP̃j(`, ν, T ; k, T ) = dI`>k = dH(`− k) = −δ(k − `)dk.
Let’s find the characteristic functions fj for j = 1, 2. Let τ = T − t be the time

to go. We seek the functions f1 and f2 satisfying

f1(`, ν, t; k, T ) = exp
(
g1(τ) + ν1/2h1(τ) + (ν1/2)2h2(τ) + ix`

)
,

f2(`, ν, t; k, T ) = exp
(
g2(τ) + ν1/2h3(τ) + (ν1/2)2h4(τ) + ix` + rτ

)
,

respectively with the boundary conditions

gi(0) = 0 = hj(0) for i = 1, 2 and j = 1, 2, 3, 4.

Lemma 3.2. The functions P̃1 and P̃2 can be computed by the inverse Fourier
transforms of the characteristic function, e.g.,

P̃j(`, ν, t; k, T ) =
1
2

+
1
π

∫ +∞

0+

Re

[
e−ixkfj(`, ν, t; k, T )

ix

]
dx,(3.7)

for j = 1, 2. Re[·] denote the real part of the complex number.
The characteristic function f1 is given by

f1(`, ν, t; k, T ) = exp
(
g1(τ) + ν1/2h1(τ) + νh2(τ) + ix`

)
.

h2 is given by

h2(τ) =

(
η2
1 −∆2

1

) (
e∆1τ − 1

)

σ2 [η1 + ∆1 − (η1 −∆1)e∆1τ ]
:=

∞∑

i=1

biτ
i,
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where η1 = ρσ(ix + 1)− κ and ∆1 =
√

η2
1 − σ2ix(ix + 1). h1 is given by

h1(τ) =
∞∑

i=1

aiτ
i, a1 = γ1(0+), (n + 1)an+1 =

η1

2
an +

σ2

2

∑
i+j=n

1≤i,j≤n

aibj ,

where γ1(0+) represents a small value factor which appears in the coefficient of ν1/2

as the one of ν3/2.

g1(τ) = κθ

∫ τ

0
h2(τ)dτ − λSmτ + (r − λSm)ixτ +

σ2

8

∫ τ

0
h2

1(τ)dτ

+λSτ

∫

R

(
e(ix+1)y − 1

)
φY (y)dy + λν

∫ τ

0

∫

R

(
ezh2(τ) − 1

)
φZ(z)dzdτ,

which is equal to the equations as in [6] if the coefficient h1(τ) of order ν1/2 is zero.
The characteristic function f2 is given by

f2(`, ν, T ; k, T ) = exp
(
g2(τ) + ν1/2h3(τ) + νh4(τ) + ix` + rτ

)
.

h4 is given by

h4(τ) =

(
η2
2 −∆2

1

) (
e∆2τ − 1

)

σ2 [η2 + ∆2 − (η2 −∆2)e∆2τ ]
:=

∞∑

i=1

diτ
i,

where η2 = ρσix− κ and ∆2 =
√

η2
2 − σ2ix(ix− 1).

h3 is given by

h3(τ) =
∞∑

i=1

ciτ
i, c1 = γ2(0+), (n + 1)cn+1 =

η2

2
cn +

σ2

2

∑
i+j=n

1≤i,j≤n

cidj ,

where γ2(0+) represents a small value factor which appears in the coefficient of ν1/2

as the one of ν3/2.

g2(τ) = κθ

∫ τ

0
h4(τ)dτ + (r − λSm)ixτ +

σ2

8

∫ τ

0
h2

3(τ)dτ

+λSτ

∫

R

(
e(ix+1)y − 1

)
φY (y)dy + λν

∫ τ

0

∫

R

(
ezh2(τ) − 1

)
φZ(z)dzdτ,

which is equal to the equations as in [6] if the coefficient h3(τ) of order ν1/2 is zero.

Theorem 3.3. The value of a European call option of (3.3) is

C̃(`, ν, T ; k, T ) = e`P̃1(`, ν, T ; k, T )− ek−r(T−t)P̃2(`, ν, T ; k, T ),

where P̃1 and P̃2 are given in Lemma 3.2.

Now we prove Lemma 3.2.
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Proof. For the derivation of the equation (3.7), refer to the paper [6]. Let us compute
PDE (3.6). First let’s calculate some differentials regarding to f1.

∂f1

∂t
= (−g′1(τ)− ν1/2h′1(τ)− νh′2(τ))f1,

∂f1

∂`
= ixf1,

∂f1

∂ν
=

(
1
2
ν−1/2h1(τ) + h2(τ)

)
f1,

∂f1

∂`∂ν
= ix

(
1
2
ν−1/2h1(τ) + h2(τ)

)
f1.

∂2f1

∂ν2
=

(
h2(τ) +

1
2
ν−1/2h1(τ)

)2

f1 −
(

1
4
ν−3/2h1(τ)− 3

4
(coeff of ν3/2)ν−1/2

)
f1

=
(

h2
2(τ) +

1
4
ν−1h2

1(τ) + h1(τ)h2(τ)ν−1/2 + · · ·
)

f1 − 1
4
ν−3/2h1(τ)f1.

f1(` + y, ν, t; x, t + τ)− f1(`, ν, t; x, t + τ) = (eixy − 1)f1(`, ν, t;x, t + τ).

We use the series expansion, which is valid only when |z| < ν

(ν + z)1/2 = ν1/2 +
1
2
ν−1/2z − 1

8
ν−3/2z2 + · · ·

in the following equation.

f1(`, ν + z, t; x, t + τ)− f1(`, ν, t;x, t + τ)

=
[
exp

(
zh2(τ) + {(ν + z)1/2 − ν1/2}h1(τ)

)
− 1

]
f1

=
[
ezh2(τ)

{
1 +

(
1
2
ν−1/2z − 1

8
ν−3/2z2 +

1
16

ν−5/2z3 + · · ·
)

h1(τ)

+
1
2

(
1
4
ν−1z2 + · · ·

)
h2

1(τ)
}
− 1

]
f1,

=
[
ezh2(τ)

(
1 +

z

2
ν−1/2h1(τ) +

z2

8
ν−1h2

1(τ) + · · ·
)
− 1

]
f1

=
(
ezh2(τ) − 1

)
f1 +

z

2
h1(τ)ν−1/2ezh2(τ)f1 +

z2

8
h2

1(τ)ν−1ezh2(τ)f1 + · · · .

If we substitute the above differentials and equations into the equation (3.6), then
we have

0 = −g′1(τ)− νh′2(τ)− ν1/2h′1(τ) + (r − λSm)ix +
1
2
ixν − λSm

+κθ

(
h2(τ) +

1
2
ν−1/2h1(τ) +

3
2
(coeff of ν3/2)ν1/2

)
− 1

2
x2ν
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+ν
(
ρσ(ix + 1)− κ

)(
h2(τ) +

1
2
ν−1/2h1(τ) +

3
2
(coeff of ν3/2)ν1/2

)

+
1
2
σ2ν

(
h2

2(τ) +
1
4
ν−1h2

1(τ) + h1(τ)h2(τ)ν−1/2 − 1
4
ν−3/2h1(τ) + · · ·

)

+λS

∫

R
(e(ix+1)y − 1)φY (y)dy

+λν

∫

R

[(
ezh2(τ) − 1

)
+

z

2
h1(τ)ν−1/2ezh2(τ) + · · ·

]
φZ(z)dz.

The coefficients of ν are

h′2(τ) =
1
2
ix + (ρσ(ix + 1)− κ)h2(τ)− 1

2
x2 +

1
2
σ2h2

2(τ).

The solution of h2(τ) is given by

h2(τ) =

(
η2
1 −∆2

1

) (
e∆1τ − 1

)

σ2 [η1 + ∆1 − (η1 −∆1)e∆1τ ]
,

where η1 = ρσ(ix + 1) − κ and ∆1 =
√

η2
1 − σix(ix + 1) (See [6] for detail). The

coefficients of ν1/2 are

h′1(τ) =
1
2
η1h1(τ) +

1
2
σ2h1(τ)h2(τ) + γ1(0+),(3.8)

where we denote γ1(0+) a small value factor which appears in the coefficient of ν1/2

as the one of ν3/2. We seek h1(τ) as series solution such as

h1(τ) =
∞∑

i=1

aiτ
i.(3.9)

h2 can be written as

h2(τ) =
A1(e∆1τ − 1)
B1 − e∆1τ

=
∞∑

i=1

biτ
i,(3.10)

b1 =
A1∆1

B1 − 1
, b2 =

A1∆2
1

B1 − 1

(
1
2

+
1

B1 − 1

)
, · · · ,

where A1 = σ−2(η1 + ∆1), B1 = (η1 + ∆1)/(η1 −∆1). Substituting (3.9) and (3.10)
into (3.8), we obtain
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a1 = γ1(0+),

2a2 =
η1

2
a1,

3a3 =
η1

2
a2 +

σ2

2
a1b1,

4a4 =
η1

2
a3 +

σ2

2
(a1b2 + a2b1),

· · ·
(n + 1)an+1 =

η1

2
an +

σ2

2

∑
i+j=n

1≤i,j≤n

aibj ,

which can be solved in turn.
The constant terms are

g′1(τ) = κθh2(τ)− λSm + (r − λSm)ix +
σ2

8
h2

1(τ)

+λS

∫

R

(
e(ix+1)y − 1

)
φY (y)dy + λν

∫

R

(
ezh2(τ) − 1

)
φZ(z)dz.(3.11)

By integrating (3.11) from 0 to τ , we obtain

g1(τ) = κθ

∫ τ

0
h2(τ)dτ − λSmτ + (r − λSm)ixτ +

σ2

8

∫ τ

0
h2

1(τ)dτ

+λSτ

∫

R

(
e(ix+1)y − 1

)
φY (y)dy + λν

∫ τ

0

∫

R

(
ezh2(τ) − 1

)
φZ(z)dzdτ.

Similarly, we can compute h3, h4 and g2. ¤
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