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Abstract

Continuing advances in the formulation and solution of
risk-sensitive control problems have reached a point at
which this topic is becoming one of the more intrigu-
ing modern paradigms of feedback thought. Despite
a prevailing atmosphere of close scrutiny of theoretical
studies, the risk-sensitive body of knowledge is grow-
ing. Moreover, from the point of view of applications,
the detailed properties of risk-sensitive design are only
now beginning to be worked out. Accordingly. the time
seems to be right for a survey of the historical underpin-
nings of the subject. This paper addresses the begin-
nings and the evolution, over the first quarter-century
or so, and points out the close relationship of the topic
with the notion of optimal cost cumulants, in particu-
lar the cost variance. It is to be expected that. in due
course, some duality will appear between these notions
and those in estimation and filtering. The purpose of
this document is to help to lay a framework for that
eventuality.
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1. Introduction

For a number of years, researchers have been pointing
out that the time domain characterization of H., con-
trollers contains a “generalized” Riccati type equation
that is also found in linear-quadratic zero-sum differ-
ential games and in risk sensitive linear-exponential-
quadratic stochastic control. See, for example. [11].
This seems to suggest the possibility of a “grand syn-
thesis” of different approaches to robust control. See
Figure 1 for an overview of some of the connections
among these various different areas of robust control.
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Figure 1: Relations Between Various Robust Controls
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The beginning of stochastic control may go all the way
back to 1940s when N. Wiener published his results on
mean square filtering for weapons fire control developed
during World War II. Since then stochastic control went
through much theoretical advances by the renowned re-
searchers such as Kalman, Bucy, Wonham, Kushner,
Athans, to just name a few [16]. During this time linear
quadratic regulator (LQR), linear quadratic Gaussian
(LQG) problems have been solved in both full state and
output feedback cases. For LQG results refer to excel-
lent texts such as [5, 7, 8]. By the time Doyle and Stein
introduced loop transfer recovery (LTR) method in the
seventies, stochastic control seemed to have reached its
peak. It is around this time that Jacobson came up with
the risk-sensitive (RS) idea where the exponential of the
quadratic cost function got optimized instead of just the
queadratic cost function [13]. This RS idea developed
further in the eighties by the researchers such as Speyer,
Whittle, and Bensoussan [2, 28, 29, 32]. On the other
hand. Minimal Cost Variance(MCV) control, where the
idea is to minimize the variance (i.e., the second cumu-
lant) of the cost function instead of the mean, has heen
developing from the sixties {23, 24, 25, 34]. Nowadays
RS and MCV control are being actively investigated in
the area of stochastic control {4, 10, 33, 34].

2. A Brief History of Risk-Sensitive Control

Risk-sensitive optimal control seems to have started
with Jacobson in 1973. In the 1970s Jacobson ex-
tended LQG results by replacing the quadratic crite-
rion with an exponential of a quadratic criterion, and
related linear-exponential-quadratic-Gaussian (LEQG)
control to differential games [13]. Many years later,
Whittle noted Jacobson’s results as a risk-sensitive con-
trol {32]. Speyer et al. [28] extended Jacobson’s results
to the noisy linear measurements case in discrete time.
In [28], optimal control becomes a linear function of the
smoothed history of the state, and the solutions are ac-
quired by defining an enlarged state space composed
of the entire state history. This enlarged state vector
grows at every new stage but retains the feature of being
a discrete linear system with additive white Gaussian
noise. They also briefly discuss the continuous time
terminal LEQG problem in [28], and the solutions are
achieved by taking a formal limit of the discrete case so-
lutions. In 1976, Speyer considered the noisy measure-
ment case again in continuous time, but with zero state
weighting in the cost function [29]. Unlike the previous
work [28], the Hamilton-Jacobi-Bellman equation was
used to produce the solutions in [29]. Kumar and van
Schuppen derived the general solution of the partially
observed exponential-of-integral (EOQI) problem in con-
tinuous time with zero plant noise in 1981 [15]. In 1981,
Whittle then published his results for the general solu-



tion of the partially observed LEOI problem in discrete
time. Four years later, Bensoussan and van Schuppen
reported the solution to the general case of a continu-
ous time partially observed stochastic EOI problem us-
ing a different method from Whittle [2]. Unexpectedly
in 1988, Glover and Doyle related H., and minimum
entropy criteria to the infinite horizon version of LEQOI
theory in discrete time, thus establishing a relationship
between Whittle’s risk-sensitive control and H,, opti-
mal control [11]. This result was extended to continu-
ous time by Glover [12]. In 1990, Whittle published the
risk-sensitive maximum principle in book form [31], and
published a journal article about the risk-sensitive max-
imum principle for the case of partially observed states
using large deviation ideas [32]. A couple years later,
Bensoussan published a book with all solutions (includ-
ing the partially observed case) of the exponential-of-
integral problem [3]. Basar and Bernhard noted the
relationship between deterministic dynamic games and
H,, optimal control in their book [1]. Also, the rela-
tionship between Hs and H., control has been stud-
ied in [6]. In 1992, James states that the risk-sensitive
optimal control problem with full-state-feedback infor-
mation is equivalent to a stochastic differential game
problem. Fleming and McEneaney pointed out inde-
pendent, but similar, results in 1992. In 1993, Won,
Sain, and Spencer used Runolfsson’s infinite horizon
LEOI control results in a structural control applica-
tion [33]. Hopkins presented discounted EOI solutions
in 1994. More recently, in 1994, James, et al. pub-
lished risk-sensitive control and dynamic games solu-
tions for partially observed discrete-time nonlinear sys-
tems [14]. Runolfsson presented the relationship be-
tween Whittle’s risk-sensitive control and stochastic dif-
ferential games in the infinite-horizon case using large
deviation ideas [21]. Most recently, Fleming and McE-
neaney published infinite-horizon full state feedback RS
control results for nonlinear system and nonquadratic
cost; and Bensoussan and Eliott published extensions
of finite time partially observed RS contro! 1 results in
SIAM Journal on Control and Optimization[10, 4].

3. A Brief History of Minimal Cost Variance
Control

The fundamental idea behind minimal cost variance
(MCV) control is to minimize the variance of the cost
function while keeping the mean at a prespecified level.
MCV control may be viewed in a broader context,
which we shall call cost cumulant control. In cost cu-
mulant control, certain linear combinations of the cost
cumulants are constrained or minimized. Thus, the
classical minimal mean cost problem can be seen as a
special case of cost cumulant control, in which the first
cumulant is minimized. This idea of minimizing the ex-
pected value of the cost function was developed in the
1960s; for example see [7, 30]. MCV control, which is
also a form of cost cumulant control, was first devel-
oped in a dissertation in 1965 [22], and appeared in a
journal in 1966 [23]. In 1968, Sain and Souza exam-
ined the minimal cost variance concept for problems of
estimation[24]. In 1971, Sain and Liberty published an
open loop result on minimizing the performance vari-
ance while keeping the performance mean at or below
a prespecified value [25]. Liberty continued to study
characteristic functions of integral quadratic forms, fur-
ther developing the open loop MCV control idea in a
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Hilbert space setting [18]. Some years later, Liberty and
Hartwig published the results of generating cost cumu-
lants in the time domain [19]. Recently, Sain, Won,
and Spencer showed that MCV control is an approxi-
mation of risk-sensitive control under some appropriate
assumptions [26, 338 Finally, feedback MCV control
results are given in [34].

3.1. Open Loop Minimal Cost Variance Control
Consider a linear system

#(t) = AW)z(t) + B(t)u(t) + C{t)w(t)

and the performance measure

(1)

J= /0 F[z/(t)Qr(t) + ' (t)Ru(t)] dt + 2'(tp)Px(tp)
(2)

where w(t) is zero mean with white characteristics rela-
tive to the system, tp is the fixed final time, x(¢) € R"
is the state of the system, and u(¢) € R™ is the control
action. The weighting matrices P and () are symmetric
and positive semidefinite. And R is a symmetric and
positive definite matrix. Note that

E{w(t)w'(c)} = S6(t — o) (3)
where 6 denotes the Dirac delta function and the (')
denotes the transposition.

The fundamental idea behind minimal cost variance
control [22, 23] is to minimize the variance of the cost
function J

Juv = VAR {J} (4)
while satisfying a constraint
Ef{J}=M (5)

where J is the cost function and the subscript & on
E denotes the expectation based upon a control law k&
generating the control action u(t) from the state z(t)
or from a measurement history arising from that state.
By means of a Lagrange multiplier p, corresponding to
the constraint (5), one can form the function

Juv = p(E{J} = M)+ VARJ, (6)

which is equivalent to minimizing

Juv = pEx{J} + VAR{J}. (7)

In [25], a Riccati solution to Jysy minimization is de-
veloped for the open loop case

, 2{0}). (8)

The solution is based upon the differential equations

u(t) = k(t

H0) = A(D=(1) - 3BORTBWH  (9)
pt) = —A' (A1) — 2Q=(t) — 8uQu(t)  (10)
B(t) = A(B)u(t) + COSC(y(t) (1)
§(t) = — (Y1) - Q=(1) (12)



with boundary conditions

2(0) = z(0) (13)

pltr) = 2Pz(tp) + 8uPu(tr) (14)
v(0)=0 (15)

y(tr) = Pz(tr) (16)

and the control action relationship

u(t) = —%R”B’(t)f;(t).

3.2. Feedback Minimal Cost Variance Control

Consider the Ito sense stochastic diferential equation

(SDE) with control.
dz(t) = f(t,z(t),

And the cost function

J(t,z(t). k) = /t i [L(s,.r(s),k(s.;r(s)))]ds+u"(.1'(tp)).
(19)

In MCYV control we define a class of admissible con-
trollers, then the cost variance is minimized within that
class of controllers [27]. Define

Vi(t,zi k) = E{J(t.2(t)
Vo(t.zi k) = E{J*(t,x(

A minimal mean cost
Vilt,z k) = ?/,".(t, T
and k an admissible control law.

Vit z).

u(t))dt + o(t, z(t))dw(t). (18)

=z}
) = z}.

conrrol law k3, satisfies
y< Vi(t,zsk), forte T,z € R",
Clearly, M(t,z) >

k|1‘t

B)z(t

An MCV control law ki, satisfies Va(t.zi k7)) =
Vo(t,z) < Vu(t.a;k), fort € T, r € R”, whenever k is

admissible. The corresponding minimal cost variance
is given by V~{¢t,x) = V;(t,z) — M?(t,z) for t € T,
r € R".

Here we present the full-state-feedback solution of
the MCV control problem for a linear system and a
quadratic cost function. For full derivation, refer to

(27, 34].
We assume that:
ot.x) = E(t), (20)
L(t,z, k(t,2)) = 2(t) Qx(t) + K (t.x)R(t)k(t, x), (21)
v(a(tr)) = 2'(tr)Qra(ts), (22)
and
f(tor k(t.2) = A(Da(t) + B(Ok(tx).  (23)
Then the linear optimal MCV controller is given by
kv ar(tx) = =R (B ()[M(t) + ~()V(1)]z,

where M and V are the solutions of the coupled Riccati
equations (suppressing the time argument):

M+ AM+MA+QG - MBR'B'M
++*VBR™'B'V =0 (24)
and
V+4MEWE' M+ A'V+VA- MBR™ !BV
~VBR'B'M -2vVBR™'B'V =0, (25)

with boundary conditions M(¢p) = Qr and V(tr) = 0.
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4. Conclusions and Future Research Topics

A survey of the historical underpinnings of risk-
sensitive control theory has been presented, together
with some of its relationships to the notion of optimal
control cost cumulants. Although the results presented
are mostly theoretical, there also exists some applica-
tions orientred results. For RS controlled missile guid-
ance example see [29], and for RS controlled structure
application see [33, 34]. Another interesting as well as
a little surprising are of application is in the field of
economics. For NCV applications see [34]. Neverthe-
less, much more research is needed in applying RS and
MCYV control, expecially in the nonlinear case. Along
the line of theory, there are some results in full state
feedback RS control [10]. If one views RS control as an
optimization of infinite sum of cumulants, with LQG as
an optimization of the first cumulant, MCV as an op-
timization of the second cumulant, and so forth, then
optimization of any cumulant (cost cumulant control)
is a possible extension and a generalization of LQG,

MCYV, and RS control theory.
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